Home
Class 12
MATHS
int(1)/(sin^(2)x cos^(2)x) dx = ?...

`int(1)/(sin^(2)x cos^(2)x) dx = ?`

A

`tanx + cot x + C`

B

`-tan x + cot x + C`

C

`tanx - cot x + C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the integrand using the identity \( \sin^2 x + \cos^2 x = 1 \). ### Step 1: Rewrite the integrand We can express the integrand as follows: \[ \frac{1}{\sin^2 x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}. \] ### Step 2: Split the fraction Now, we can split the fraction into two parts: \[ \frac{1}{\sin^2 x \cos^2 x} = \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}. \] ### Step 3: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \right) \, dx = \int \sec^2 x \, dx + \int \csc^2 x \, dx. \] ### Step 4: Use known integrals We know that: \[ \int \sec^2 x \, dx = \tan x + C, \] and \[ \int \csc^2 x \, dx = -\cot x + C. \] ### Step 5: Combine the results Thus, we can combine the results of the integrals: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = \tan x - \cot x + C. \] ### Final Answer Therefore, the final answer is: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = \tan x - \cot x + C. \] ---

To solve the integral \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx, \] we can start by rewriting the integrand using the identity \( \sin^2 x + \cos^2 x = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/(16sin^(2)x+25cos^(2)x)dx=

int(1)/(3sin^(2) x+4 cos^(2) x)dx

Evaluate int(1)/(4sin^(2) x + 9 cos^(2) x) dx

int 1/(sin^2x cos^2x) dx

Evaluate: int(1)/(1+3sin^(2)x+8cos^(2)x)dx

int((sinx+cosx)(1-sinxcosx))/(sin^(2)x cos^(2)x)dx=

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

int(ln(1+sin^(2)x))/(cos^(2)x)dx

Evaluate: int(1)/(sin x(2cos^(2)x-1))dx