Home
Class 12
MATHS
int (cos 2x)/(cosx^(2) sin^(2)x) dx = ?...

`int (cos 2x)/(cosx^(2) sin^(2)x) dx = ?`

A

`-cotx - tan x + C`

B

`- cot x + tanx + C`

C

`cot x - tan x + C`

D

`cot x + tanx + C`

Text Solution

Verified by Experts

The correct Answer is:
A

`cos 2x = (cos^(2)x - sin^(2)x)`.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int (cos2x)/(cosx) dx=

Evaluate : (i) int((4-5 cosx)/(sin^(2)x))dx , (ii) int((1-cos2x)/(1+cos2x)) dx (iii) int (1)/(sin^(2)x cos^(2)x) dx , (iv) int(cos2x)/(cos^(2)x sin^(2) x) dx

int(cos2x)/((cos x+sin x)^(2))dx

int(cosx)/(sin^(2)x)dx=

int(1-cosx)cos^(2)x dx=

int(cos2x)/(cosx-sinx)dx=

int(cos 2x-sin 2x)/(cos2x+sin2x)dx

(i) int (cos x-sin x)/sqrt(1+ sin 2x) dx (ii) int (cos x) /((cos (x/2)+sin (x/2))) dx