Home
Class 12
MATHS
int sqrt(1+ cos 2x) dx = ?...

`int sqrt(1+ cos 2x) dx = ?`

A

`sqrt(2) cos x + C`

B

`sqrt(2) sinx + C`

C

`-sqrt(2) cos x + C`

D

`-sqrt(2) sin x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos 2x \) We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can express \( 1 + \cos 2x \) as: \[ 1 + \cos 2x = 1 + (2 \cos^2 x - 1) = 2 \cos^2 x \] ### Step 2: Substitute into the integral Now, substitute this back into the integral: \[ \int \sqrt{1 + \cos 2x} \, dx = \int \sqrt{2 \cos^2 x} \, dx \] ### Step 3: Simplify the square root The square root can be simplified: \[ \sqrt{2 \cos^2 x} = \sqrt{2} \cdot \cos x \] Thus, the integral becomes: \[ \int \sqrt{2} \cdot \cos x \, dx \] ### Step 4: Factor out the constant Since \( \sqrt{2} \) is a constant, we can factor it out of the integral: \[ \sqrt{2} \int \cos x \, dx \] ### Step 5: Integrate \( \cos x \) The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x + C \] where \( C \) is the constant of integration. ### Step 6: Combine the results Putting it all together, we have: \[ \sqrt{2} \int \cos x \, dx = \sqrt{2} (\sin x + C) = \sqrt{2} \sin x + C\sqrt{2} \] ### Final Answer Thus, the final result of the integral is: \[ \int \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \sin x + C \] ---

To solve the integral \( \int \sqrt{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Use the identity for \( \cos 2x \) We know that: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus, we can express \( 1 + \cos 2x \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int sqrt(1+cos x)dx

int sqrt(1+cos x)dx

int sqrt(1-cos x)dx=

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate : int sqrt(1- " cos"^(2) x) " dx "

Evaluate: int sqrt(1+cos2x) dx (ii) int sqrt(1+sin2x) dx.

(i) int sqrt(1+cos2x) dx , (ii) intsqrt(1-cos2x)dx

" (c) "int sqrt(1-cos^(2)x)dx

int(1)/(sqrt(1+cos 2x))dx

int sin x sqrt(1-cos2x)dx