Home
Class 12
MATHS
int sec x (sec x + tanx ) dx =...

`int sec x (sec x + tanx ) dx = `

A

`tanx - sec x + C`

B

`-tanx + secx + C`

C

`tanx + sec x + C`

D

`-tanx - secx + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sec x (\sec x + \tan x) \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we expand the expression inside the integral: \[ \sec x (\sec x + \tan x) = \sec^2 x + \sec x \tan x \] So, we rewrite the integral: \[ \int \sec x (\sec x + \tan x) \, dx = \int (\sec^2 x + \sec x \tan x) \, dx \] ### Step 2: Split the integral Now, we can split the integral into two separate integrals: \[ \int (\sec^2 x + \sec x \tan x) \, dx = \int \sec^2 x \, dx + \int \sec x \tan x \, dx \] ### Step 3: Integrate each part We know the standard integrals: - The integral of \( \sec^2 x \) is \( \tan x \). - The integral of \( \sec x \tan x \) is \( \sec x \). So we can write: \[ \int \sec^2 x \, dx = \tan x \] \[ \int \sec x \tan x \, dx = \sec x \] ### Step 4: Combine the results Now, we combine the results of the two integrals: \[ \int \sec^2 x \, dx + \int \sec x \tan x \, dx = \tan x + \sec x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result of the integral is: \[ \int \sec x (\sec x + \tan x) \, dx = \tan x + \sec x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int sec x ln(sec x+tan x)dx=

int sec x(sec x+tan x)dx

int sec x(sec x+tan x)dx

int sec x log(secx+tanx)dx=

int sec x log (sec x+tan x) dx.

int sec x dx=

Write the value of int sec x(sec x+tan x)dx

" 9."int sec x(sec x+tan x)dx

int(sec x)/(sec x+tan x)dx=