Home
Class 12
MATHS
inttan^(-1){sqrt((1-cos2x)/(1+cos2x))} d...

`inttan^(-1){sqrt((1-cos2x)/(1+cos2x))} dx = ?`

A

`1/((1+x^(2))) + C`

B

`1/(sqrt(1+x^(2))) + C`

C

`1/(sqrt(1-x^(2))) + C`

D

`(x^(2))/(2) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \tan^{-1} \left( \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \right) dx, \] we can follow these steps: ### Step 1: Simplify the expression inside the integral Recall the double angle identities for cosine: \[ \cos 2x = 1 - 2\sin^2 x \quad \text{and} \quad \cos 2x = 2\cos^2 x - 1. \] Using these identities, we can express \(1 - \cos 2x\) and \(1 + \cos 2x\): \[ 1 - \cos 2x = 2\sin^2 x, \] \[ 1 + \cos 2x = 2\cos^2 x. \] Substituting these into the integral gives: \[ \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \sqrt{\frac{2\sin^2 x}{2\cos^2 x}} = \sqrt{\frac{\sin^2 x}{\cos^2 x}} = \frac{\sin x}{\cos x} = \tan x. \] ### Step 2: Substitute back into the integral Now, we can rewrite the integral as: \[ \int \tan^{-1}(\tan x) \, dx. \] ### Step 3: Simplify the integral Since \(\tan^{-1}(\tan x) = x\) for \(x\) in the interval \((- \frac{\pi}{2}, \frac{\pi}{2})\), we have: \[ \int \tan^{-1}(\tan x) \, dx = \int x \, dx. \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ \int x \, dx = \frac{x^2}{2} + C, \] where \(C\) is the constant of integration. ### Final Result Thus, the final result is: \[ \int \tan^{-1} \left( \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \right) dx = \frac{x^2}{2} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int tan^(-1){sqrt((1-cos2x)/(1+cos2x))}dx .

intsqrt((1-cos2x)/(1+cos 2x))dx=

Evaluate: int tan^(-1){sqrt(((1-cos2x)/(1+cos2x)))}

int ((1-cos2x))/((1+cos 2x)) dx = ?

If pi/2

inttan^(-1)sqrt((1-x)/(1+x))dx=

int(1+cos^(2)x)/(1-cos2x)dx=

inttan^-1sqrt((1-x)/(1+x))dx

int(x)/(1+cos2x)dx