Home
Class 12
MATHS
int sin^(-1)((2tanx )/(1+tan^(2)x))dx = ...

`int sin^(-1)((2tanx )/(1+tan^(2)x))dx = ?`

A

`-x^(2) + C`

B

`x^(2) + C`

C

`(x^(2))/(2) + C`

D

`2x^(2) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \sin^{-1}\left(\frac{2\tan x}{1+\tan^2 x}\right) dx, \] we can use the identity for the sine of double angles. ### Step 1: Recognize the identity We know that \[ \sin(2x) = \frac{2\tan x}{1 + \tan^2 x}. \] Thus, we can rewrite the integral as: \[ \int \sin^{-1}(\sin(2x)) \, dx. \] ### Step 2: Simplify the integral Since \(\sin^{-1}(\sin(2x))\) is equal to \(2x\) (for \(x\) in the principal range of \(\sin^{-1}\)), we can simplify our integral: \[ \int \sin^{-1}(\sin(2x)) \, dx = \int 2x \, dx. \] ### Step 3: Integrate Now, we can integrate \(2x\): \[ \int 2x \, dx = 2 \cdot \frac{x^2}{2} + C = x^2 + C. \] ### Final Answer Thus, the integral evaluates to: \[ \int \sin^{-1}\left(\frac{2\tan x}{1+\tan^2 x}\right) dx = x^2 + C. \]

To solve the integral \[ \int \sin^{-1}\left(\frac{2\tan x}{1+\tan^2 x}\right) dx, \] we can use the identity for the sine of double angles. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int cot^(-1)((sin2x)/(1-cos2x))dx (ii) int sin^(-1)((2tan x)/(1+tan^(2)x))dx

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

Evaluate the following integrals: int sin^(-1)((2tan x)/(1+tan^(2)x))dx

int(2tanx)/(2+3tan^(2)x)dx=

int (tanx sec^(2)x)/((1-tan^(2)x))dx.

int(1+tan^2x)/(1-tan^2x)dx=

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int (tanx/(4+9tan^2x))dx =?

int((1-tanx)/(1+tanx))^(2)dx=