Home
Class 12
MATHS
int tan^(-1)(cosecx - cotx)dx = ?...

`int tan^(-1)(cosecx - cotx)dx = ?`

A

`(x^(2))/(4) + C`

B

`(-x^(2))/(4) + C`

C

`(x^(2))/(2) + C`

D

`(-x^(2))/(2) + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}(\csc x - \cot x) \, dx \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ \tan^{-1}(\csc x - \cot x) \] Recall that: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] Thus, \[ \csc x - \cot x = \frac{1 - \cos x}{\sin x} \] ### Step 2: Use the Identity for \( \tan^{-1} \) Using the identity for the inverse tangent: \[ \tan^{-1}(u) = \tan^{-1}\left(\frac{a}{b}\right) \quad \text{where } u = \frac{a}{b} \] we can rewrite our expression: \[ \tan^{-1}\left(\frac{1 - \cos x}{\sin x}\right) \] ### Step 3: Recognize the Form Notice that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] and \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] Thus, \[ \tan^{-1}\left(\frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}\right) = \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) \] ### Step 4: Simplify Further Since \( \tan^{-1}(\tan(\theta)) = \theta \) for \( \theta \) in the principal range: \[ \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2} \] ### Step 5: Integrate Now we can integrate: \[ \int \tan^{-1}(\csc x - \cot x) \, dx = \int \frac{x}{2} \, dx \] This integral can be computed as: \[ = \frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} + C = \frac{x^2}{4} + C \] ### Final Answer Thus, the final result is: \[ \int \tan^{-1}(\csc x - \cot x) \, dx = \frac{x^2}{4} + C \] ---

To solve the integral \( \int \tan^{-1}(\csc x - \cot x) \, dx \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ \tan^{-1}(\csc x - \cot x) \] Recall that: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(cotx)

int(cotx)/(cosecx-cotx)dx=

int cosecx(cosec x + cot x) dx = ?

int (tan^(-1)x)dx

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

int(1+cotx)/(1-cotx)dx=

intlog(tan((x)/(2))) cosecx dx=

intsqrt(cosecx-1)dx=

inte^x(cotx-1-cot^2 x)dx=