Home
Class 12
MATHS
int((x-1))/((x-1)^(2)(2x+3))dx...

`int((x-1))/((x-1)^(2)(2x+3))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x-1}{(x-1)^2(2x+3)} \, dx \), we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Simplify the Integrand First, we can simplify the integrand: \[ \frac{x-1}{(x-1)^2(2x+3)} = \frac{1}{(x-1)(2x+3)} \] This is because \( (x-1) \) in the numerator cancels with one \( (x-1) \) in the denominator. ### Step 2: Set Up Partial Fractions Next, we express \( \frac{1}{(x-1)(2x+3)} \) in terms of partial fractions: \[ \frac{1}{(x-1)(2x+3)} = \frac{A}{x-1} + \frac{B}{2x+3} \] where \( A \) and \( B \) are constants we need to determine. ### Step 3: Clear the Denominator Multiply both sides by the denominator \( (x-1)(2x+3) \): \[ 1 = A(2x+3) + B(x-1) \] ### Step 4: Expand and Collect Like Terms Expanding the right side: \[ 1 = 2Ax + 3A + Bx - B \] Combining like terms gives: \[ 1 = (2A + B)x + (3A - B) \] ### Step 5: Set Up the System of Equations Now, we can equate the coefficients from both sides: 1. \( 2A + B = 0 \) (coefficient of \( x \)) 2. \( 3A - B = 1 \) (constant term) ### Step 6: Solve the System of Equations From the first equation, we can express \( B \) in terms of \( A \): \[ B = -2A \] Substituting \( B \) into the second equation: \[ 3A - (-2A) = 1 \implies 3A + 2A = 1 \implies 5A = 1 \implies A = \frac{1}{5} \] Now substituting \( A \) back to find \( B \): \[ B = -2 \left(\frac{1}{5}\right) = -\frac{2}{5} \] ### Step 7: Rewrite the Integral Now we can rewrite the integral using the values of \( A \) and \( B \): \[ \int \left( \frac{1/5}{x-1} - \frac{2/5}{2x+3} \right) \, dx \] ### Step 8: Integrate Each Term Now we can integrate each term separately: \[ \int \frac{1/5}{x-1} \, dx - \int \frac{2/5}{2x+3} \, dx \] The integrals are: \[ \frac{1}{5} \ln |x-1| - \frac{2}{5} \cdot \frac{1}{2} \ln |2x+3| + C \] This simplifies to: \[ \frac{1}{5} \ln |x-1| - \frac{1}{5} \ln |2x+3| + C \] ### Step 9: Combine the Logarithms Using properties of logarithms: \[ \frac{1}{5} \left( \ln |x-1| - \ln |2x+3| \right) + C = \frac{1}{5} \ln \left| \frac{x-1}{2x+3} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x-1}{(x-1)^2(2x+3)} \, dx = \frac{1}{5} \ln \left| \frac{x-1}{2x+3} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int((x-1)/((2x+1)(x-2)(x-3)))dx

int(x^(2))/((x-1)(x-2)(x-3))dx

Evaluate int((x-1)/((2x+1)(x-2)(x-3)))dx

int(3x-2)/((x+1)^(2)(x+3))dx

int((x+1))/((x^(2)+2x-3))dx

int((x-1))/(x^(2)-2x+3)dx

Evaluate: int(2x+1)/((x-2)(x-3))dx

int 1/((x-1)(x+2)(2x-3))dx

int(x^3(2x-1))/(x-1)dx

int(x^(2)+3x-1)/((x+1)^(2))dx