Home
Class 12
MATHS
int ( sin x cos x)/((cos^(2)x-cos x-2))d...

`int ( sin x cos x)/((cos^(2)x-cos x-2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \cos x \). Then, we have: \[ \sin x \, dx = -dt \] Thus, the integral becomes: \[ \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} \, dx = \int \frac{-t}{t^2 - t - 2} \, dt \] ### Step 2: Factor the Denominator Next, we need to factor the denominator \( t^2 - t - 2 \): \[ t^2 - t - 2 = (t + 1)(t - 2) \] So, we rewrite the integral: \[ \int \frac{-t}{(t + 1)(t - 2)} \, dt \] ### Step 3: Partial Fraction Decomposition We express the integrand using partial fractions: \[ \frac{-t}{(t + 1)(t - 2)} = \frac{A}{t + 1} + \frac{B}{t - 2} \] Multiplying through by the denominator \( (t + 1)(t - 2) \) gives: \[ -t = A(t - 2) + B(t + 1) \] Expanding the right side: \[ -t = At - 2A + Bt + B \] Combining like terms: \[ -t = (A + B)t + (-2A + B) \] Setting coefficients equal gives us the system: 1. \( A + B = -1 \) 2. \( -2A + B = 0 \) ### Step 4: Solve the System of Equations From the second equation, we can express \( B \) in terms of \( A \): \[ B = 2A \] Substituting into the first equation: \[ A + 2A = -1 \implies 3A = -1 \implies A = -\frac{1}{3} \] Then substituting \( A \) back to find \( B \): \[ B = 2 \left(-\frac{1}{3}\right) = -\frac{2}{3} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{-\frac{1}{3}}{t + 1} + \frac{-\frac{2}{3}}{t - 2} \right) dt \] This simplifies to: \[ -\frac{1}{3} \int \frac{1}{t + 1} \, dt - \frac{2}{3} \int \frac{1}{t - 2} \, dt \] ### Step 6: Integrate Now we integrate each term: \[ -\frac{1}{3} \ln |t + 1| - \frac{2}{3} \ln |t - 2| + C \] ### Step 7: Substitute Back Substituting \( t = \cos x \) back into the expression gives: \[ -\frac{1}{3} \ln |\cos x + 1| - \frac{2}{3} \ln |\cos x - 2| + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} \, dx = -\frac{1}{3} \ln |\cos x + 1| - \frac{2}{3} \ln |\cos x - 2| + C \]

To solve the integral \( \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \cos x \). Then, we have: \[ \sin x \, dx = -dt \] Thus, the integral becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int((sin x cos x))/(cos2x)dx

int (sin x+2cos x)dx

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

" &."int(sin x cos x)/(a cos^(2)x+b sin^(2)x)dx

int e^(x)sin x cos x cos2x cos4x.dx

int(3sin x-2)cos x(dx)/(5-cos^(2)x-4sin x)

int(sin x+cos x)/(sin x-cos x)dx

int (sin x) / ((1-cos x) (2-cos x)) dx

Evaluate: int(sin x+2cos x)/(2sin x+cos x)dx

Evaluate: int(-sin x+2cos x)/(2sin x+cos x)dx