Home
Class 12
MATHS
int(dx)/(x(x^(4)-1))...

`int(dx)/(x(x^(4)-1))`

Text Solution

AI Generated Solution

To solve the integral \( I = \int \frac{dx}{x(x^4 - 1)} \), we will use the method of partial fractions. Let's go through the steps in detail. ### Step 1: Factor the Denominator First, we need to factor the denominator \( x^4 - 1 \). We can factor it as follows: \[ x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \] Thus, the integral can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(x^(4)-1)

int(x)/(x^(4)-1)dx

int(x)/(x^(4)-1)dx

int(x)/(x^(4)-1)dx

int(dx)/(x^(3)+x^(4))dx1,334

int(x^(9)dx)/((x^(4)-1)^(2))

int(x^3dx)/((1+x^(4))

int(x)/(1+x^(4))dx=

Evaluate: int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))