Home
Class 12
MATHS
int((x^(2)+x+1))/((x+2)(x+1)^(2))dx...

`int((x^(2)+x+1))/((x+2)(x+1)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2 + x + 1}{(x + 2)(x + 1)^2} \, dx \), we will use the method of partial fractions. Let's go through the steps systematically. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{x^2 + x + 1}{(x + 2)(x + 1)^2} = \frac{A}{x + 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \] where \( A \), \( B \), and \( C \) are constants we need to determine. ### Step 2: Clear the denominators Multiply both sides by the denominator \((x + 2)(x + 1)^2\): \[ x^2 + x + 1 = A(x + 1)^2 + B(x + 2)(x + 1) + C(x + 2) \] ### Step 3: Expand the right-hand side Expanding the right-hand side: \[ A(x^2 + 2x + 1) + B(x^2 + 3x + 2) + C(x + 2) \] This simplifies to: \[ (A + B)x^2 + (2A + 3B + C)x + (A + 2B + 2C) \] ### Step 4: Set up the system of equations Now, we can equate coefficients from both sides: 1. For \( x^2 \): \( A + B = 1 \) 2. For \( x \): \( 2A + 3B + C = 1 \) 3. For the constant term: \( A + 2B + 2C = 1 \) ### Step 5: Solve the system of equations From equation (1): \( A + B = 1 \) implies \( B = 1 - A \). Substituting \( B \) into equations (2) and (3): - From (2): \[ 2A + 3(1 - A) + C = 1 \implies 2A + 3 - 3A + C = 1 \implies -A + C = -2 \implies C = A - 2 \] - From (3): \[ A + 2(1 - A) + 2(A - 2) = 1 \implies A + 2 - 2A + 2A - 4 = 1 \implies A - 2 = 1 \implies A = 3 \] Substituting \( A = 3 \) back to find \( B \) and \( C \): \[ B = 1 - 3 = -2 \] \[ C = 3 - 2 = 1 \] ### Step 6: Write the partial fractions Now we have: \[ \frac{x^2 + x + 1}{(x + 2)(x + 1)^2} = \frac{3}{x + 2} - \frac{2}{x + 1} + \frac{1}{(x + 1)^2} \] ### Step 7: Integrate each term Now we can integrate each term separately: \[ \int \left( \frac{3}{x + 2} - \frac{2}{x + 1} + \frac{1}{(x + 1)^2} \right) \, dx \] 1. \( \int \frac{3}{x + 2} \, dx = 3 \ln |x + 2| + C_1 \) 2. \( \int -\frac{2}{x + 1} \, dx = -2 \ln |x + 1| + C_2 \) 3. \( \int \frac{1}{(x + 1)^2} \, dx = -\frac{1}{x + 1} + C_3 \) ### Step 8: Combine the results Combining all the integrals, we get: \[ \int \frac{x^2 + x + 1}{(x + 2)(x + 1)^2} \, dx = 3 \ln |x + 2| - 2 \ln |x + 1| - \frac{1}{x + 1} + C \] ### Final Answer \[ \int \frac{x^2 + x + 1}{(x + 2)(x + 1)^2} \, dx = 3 \ln |x + 2| - 2 \ln |x + 1| - \frac{1}{x + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int((x^(2)+x+1))/((x+2)(x^(2)-1))dx

int(x^(2)+x+1)/((x+2)(x^(2)+1))dx

Find int(x^(2)+x+1)/((x+2)(x^(2)+1))dx

Evaluate : "int((x^(2)-x+1))/((x^(2)+1))dx

int((x^(2)+1)dx)/(x(x^(2)-1))

Evaluate: int(x^2+x+1)/((x+2)(x^2+1)) dx

int(x^(2)+x+1)/(x^(2)-x+1)dx

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

int(x^(4)+1)/(x(x^(2)+1)^(2))dx