Home
Class 12
MATHS
int(dx)/(sin x(3+2cosx))...

`int(dx)/(sin x(3+2cosx))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\sin x (3 + 2 \cos x)}, \] we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sin x (3 + 2 \cos x)}. \] ### Step 2: Rationalize the Denominator To simplify the integral, we can multiply the numerator and denominator by \(\sin x\): \[ I = \int \frac{\sin x \, dx}{\sin^2 x (3 + 2 \cos x)}. \] ### Step 3: Substitute for \(\cos x\) Let \(T = \cos x\). Then, the derivative is: \[ dT = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dT. \] ### Step 4: Rewrite \(\sin^2 x\) Using the identity \(\sin^2 x = 1 - \cos^2 x\), we can express \(\sin^2 x\) in terms of \(T\): \[ \sin^2 x = 1 - T^2. \] ### Step 5: Substitute in the Integral Now substituting everything into the integral, we have: \[ I = \int \frac{-dT}{(1 - T^2)(3 + 2T)}. \] ### Step 6: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{1}{(1 - T^2)(3 + 2T)} = \frac{A}{1 - T} + \frac{B}{1 + T} + \frac{C}{3 + 2T}. \] ### Step 7: Solve for Coefficients Multiply through by the denominator \((1 - T^2)(3 + 2T)\) and equate coefficients to find \(A\), \(B\), and \(C\). ### Step 8: Integrate Each Term Once we have \(A\), \(B\), and \(C\), we can integrate each term separately: \[ I = A \int \frac{dT}{1 - T} + B \int \frac{dT}{1 + T} + C \int \frac{dT}{3 + 2T}. \] ### Step 9: Compute the Integrals The integrals are: \[ \int \frac{dT}{1 - T} = -\log|1 - T|, \quad \int \frac{dT}{1 + T} = \log|1 + T|, \quad \int \frac{dT}{3 + 2T} = \frac{1}{2} \log|3 + 2T|. \] ### Step 10: Combine Results Combine the results and substitute back \(T = \cos x\): \[ I = A(-\log|1 - \cos x|) + B(\log|1 + \cos x|) + C\left(\frac{1}{2} \log|3 + 2 \cos x|\right) + C. \] ### Step 11: Final Answer Thus, the final answer will be in terms of \(x\): \[ I = \frac{1}{10} \log|1 - \cos x| - \frac{1}{2} \log|1 + \cos x| + \frac{4}{5} \left(\frac{1}{2} \log|3 + 2 \cos x|\right) + C. \]

To solve the integral \[ I = \int \frac{dx}{\sin x (3 + 2 \cos x)}, \] we will use the method of partial fractions. Here’s a step-by-step solution: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sin x cosx) =

int(cosx-sinx)/(( sin x+ cos x)^(2))dx

int(dx)/(sin^2x+5sinx cosx+2)=

int(cosx)/(1+sin x)^2dx

int(cosx)/(sin^(2)x)dx=

int(sin x)/(1+cosx)^2dx

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(x^(2)dx)/((x sin x+cosx)^(2))=

Evaluate: int(sin2x(1-3/2cosx))/e^(sin^2x+cos^3x)dx

int (sin x)/((1+cosx))dx.