Home
Class 12
MATHS
int(dx)/((sin x+sin 2x))...

`int(dx)/((sin x+sin 2x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sin x + \sin 2x} \), we can follow these steps: ### Step 1: Simplify the Integral We start by rewriting \( \sin 2x \) using the double angle formula: \[ \sin 2x = 2 \sin x \cos x \] Thus, the integral becomes: \[ \int \frac{dx}{\sin x + 2 \sin x \cos x} = \int \frac{dx}{\sin x (1 + 2 \cos x)} \] ### Step 2: Factor Out \( \sin x \) We can rewrite the integral as: \[ \int \frac{dx}{\sin x (1 + 2 \cos x)} = \int \frac{1}{\sin x} \cdot \frac{1}{1 + 2 \cos x} \, dx \] ### Step 3: Substitute \( t = \cos x \) Let \( t = \cos x \), then \( dt = -\sin x \, dx \) or \( dx = -\frac{dt}{\sin x} \). Thus, we rewrite the integral: \[ \int \frac{1}{\sin x (1 + 2t)} (-dt) = -\int \frac{dt}{1 + 2t} \] ### Step 4: Integrate Now we can integrate: \[ -\int \frac{dt}{1 + 2t} = -\frac{1}{2} \ln |1 + 2t| + C \] ### Step 5: Substitute Back Substituting back \( t = \cos x \): \[ -\frac{1}{2} \ln |1 + 2 \cos x| + C \] ### Final Answer Thus, the integral \( \int \frac{dx}{\sin x + \sin 2x} \) evaluates to: \[ -\frac{1}{2} \ln |1 + 2 \cos x| + C \] ---

To solve the integral \( \int \frac{dx}{\sin x + \sin 2x} \), we can follow these steps: ### Step 1: Simplify the Integral We start by rewriting \( \sin 2x \) using the double angle formula: \[ \sin 2x = 2 \sin x \cos x \] Thus, the integral becomes: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int (dx) / (sin x sin2x)

int (dx) / (sin x + sin2x)

Knowledge Check

  • int(dx)/(sin(x+a)sin(x+b))=

    A
    `(1)/(cos(b-a))log|sin(x+a)/sin(x+b)|+c`
    B
    `(1)/(cos(b-a))log|sin(x+b)/sin(x+a)|+c`
    C
    `(1)/(sin(b-a))log|sin(x+b)/sin(x+a)|+c`
    D
    `(1)/(sin(b-a))log|sin(x+a)/sin(x+b)|+c`
  • int (dx)/(sin(x-a)sin(x-b)) is

    A
    `(1)/(sin(a-b))log|(sin(x-a))/(sin(x-b))|+c`
    B
    `(-1)/(sin(a-b))log|(sin(x-a))/(sin(x-b))|+c`
    C
    `log sin(x-a)sin(x-b)+c`
    D
    `log|(sin(x-a))/(sin(x-b))|+c`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int(1)/(sin x- sin 2x)dx .

    int (1) / (sin x + sin2x) dx

    int(sin2x)/((sin x+cos x)^(2))dx

    int(1-sin x)/(sin x(1+sin x))dx

    Evaluate: int(1)/(sin^(2)x+sin2x)dx

    Evaluate: int(1)/(sin^(2)x+sin2x)dx