Home
Class 12
MATHS
int(2cos x)/(3sin ^(2)x)dx,...

`int(2cos x)/(3sin ^(2)x)dx,`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{2 \cos x}{3 \sin^2 x} \, dx\), we will use the substitution method. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{2 \cos x}{3 \sin^2 x} \, dx \] ### Step 2: Use Substitution Let’s use the substitution \(t = \sin x\). Then, the derivative of \(t\) with respect to \(x\) is: \[ dt = \cos x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\cos x} \] ### Step 3: Substitute in the Integral Now, we can substitute \(t\) and \(dx\) into the integral: \[ \int \frac{2 \cos x}{3 \sin^2 x} \, dx = \int \frac{2 \cos x}{3 t^2} \cdot \frac{dt}{\cos x} \] ### Step 4: Simplify the Integral The \(\cos x\) terms cancel out: \[ = \int \frac{2}{3 t^2} \, dt \] ### Step 5: Integrate Now we can integrate: \[ \int \frac{2}{3 t^2} \, dt = \frac{2}{3} \int t^{-2} \, dt = \frac{2}{3} \left(-\frac{1}{t}\right) + C = -\frac{2}{3t} + C \] ### Step 6: Substitute Back Now we substitute back \(t = \sin x\): \[ -\frac{2}{3 \sin x} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{2 \cos x}{3 \sin^2 x} \, dx = -\frac{2}{3 \sin x} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(2+3cos x)/(sin^(2)x)dx=

Evaluate the following integrals: int(2+3cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(cos x)/(sin^(2)x)dx

int(2-3 cos x)/(sin^(2) x)dx

Evaluate: int(cos x)/(2+3sin x)dx

int(cos x-sin x)^(2)dx

int(cos x+sin x)^(2)dx

int(cos2x)/(sin x)dx

int(dx)/(cos x*sin^(2)x)