Home
Class 12
MATHS
int ((1-cotx))/((1+cotx))dx....

`int ((1-cotx))/((1+cotx))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 - \cot x}{1 + \cot x} \, dx \), we will follow these steps: ### Step 1: Rewrite cotangent in terms of sine and cosine We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the integral as: \[ I = \int \frac{1 - \frac{\cos x}{\sin x}}{1 + \frac{\cos x}{\sin x}} \, dx \] ### Step 2: Simplify the expression To simplify the fraction, we will multiply the numerator and the denominator by \( \sin x \): \[ I = \int \frac{\sin x - \cos x}{\sin x + \cos x} \, dx \] ### Step 3: Use substitution Let \( t = \sin x + \cos x \). Then, we need to find \( dt \): \[ dt = \cos x \, dx - \sin x \, dx = (\cos x - \sin x) \, dx \] This implies: \[ dx = \frac{dt}{\cos x - \sin x} \] ### Step 4: Express the numerator in terms of \( t \) From our substitution \( t = \sin x + \cos x \), we can express \( \sin x - \cos x \) in terms of \( t \): \[ \sin x - \cos x = -(\cos x - \sin x) \] Thus, we can rewrite the integral: \[ I = \int \frac{-(\cos x - \sin x)}{t} \cdot \frac{dt}{\cos x - \sin x} \] This simplifies to: \[ I = -\int \frac{1}{t} \, dt \] ### Step 5: Integrate The integral of \( \frac{1}{t} \) is: \[ I = -\ln |t| + C \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = \sin x + \cos x \): \[ I = -\ln |\sin x + \cos x| + C \] ### Final Answer Thus, the final result for the integral is: \[ I = -\ln |\sin x + \cos x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

(1)/(1-cotx)

int ((1+cotx))/((x+logsinx))dx.

intdx/(1+cotx)

int_(0)^(pi//2)(sqrt(cotx))/((1+sqrt(cotx)))dx=?

If int(sqrt(cotx))/(sinx cos x)dx=a sqrt(cotx)+b , then

If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B , then A is equal to ______________

sqrt(1+cotx)

int(dx)/((1-cotx))=?

int(cotx)/(cosecx-cotx)dx=

int(1+cos 4x)/(cotx-tanx)dx=