Home
Class 12
MATHS
int (sin (2tan^(-1)x))/((1+x^(2)))dx....

`int (sin (2tan^(-1)x))/((1+x^(2)))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin(2 \tan^{-1} x)}{1 + x^2} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = \frac{1}{1 + x^2} \] This implies that: \[ dx = (1 + x^2) \, dt \] Thus, we can rewrite the integral as: \[ I = \int \sin(2t) \, dt \] ### Step 2: Simplifying the Integral Using the double angle formula for sine, we have: \[ \sin(2t) = 2 \sin(t) \cos(t) \] Thus, the integral becomes: \[ I = \int 2 \sin(t) \cos(t) \, dt \] ### Step 3: Integrating The integral of \( 2 \sin(t) \cos(t) \) can be simplified further: \[ I = \int \sin(2t) \, dt \] Now, we can integrate: \[ I = -\frac{1}{2} \cos(2t) + C \] ### Step 4: Back Substitution Now, we need to substitute back for \( t \): \[ t = \tan^{-1} x \] Thus, \( 2t = 2 \tan^{-1} x \). Therefore, we have: \[ I = -\frac{1}{2} \cos(2 \tan^{-1} x) + C \] ### Final Result The final answer for the integral is: \[ I = -\frac{1}{2} \cos(2 \tan^{-1} x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int (sin (2 tan^(-1)x))/(1+x^(2))dx

(i) int(1)/(sqrt(1-x^(2)).cos^(-1) x)dx (ii) int (sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

int tan^(-1)((2x)/(1-x^(2)))dx

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int(tan^(-1)x)/(x^(2))*dx

int (tan^(-1)x)^(2)/(1+x^2)dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=