Home
Class 12
MATHS
int (tanx sec^(2)x)/((1-tan^(2)x))dx....

`int (tanx sec^(2)x)/((1-tan^(2)x))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan x \sec^2 x}{1 - \tan^2 x} \, dx \), we can follow these steps: ### Step 1: Substitute \( \tan x \) Let \( t = \tan x \). Then, the derivative of \( t \) is: \[ dt = \sec^2 x \, dx \] This means that \( dx = \frac{dt}{\sec^2 x} \). ### Step 2: Rewrite the integral Substituting \( t \) into the integral, we have: \[ \int \frac{t \sec^2 x}{1 - t^2} \cdot \frac{dt}{\sec^2 x} = \int \frac{t}{1 - t^2} \, dt \] ### Step 3: Simplify the integral Now we need to integrate: \[ \int \frac{t}{1 - t^2} \, dt \] We can simplify this by using the substitution \( u = 1 - t^2 \), which gives us \( du = -2t \, dt \) or \( dt = -\frac{du}{2t} \). ### Step 4: Substitute and integrate Thus, we can rewrite the integral: \[ \int \frac{t}{u} \left(-\frac{du}{2t}\right) = -\frac{1}{2} \int \frac{1}{u} \, du \] The integral of \( \frac{1}{u} \) is: \[ -\frac{1}{2} \ln |u| + C \] ### Step 5: Back substitute for \( u \) Now, substituting back for \( u = 1 - t^2 \): \[ -\frac{1}{2} \ln |1 - t^2| + C \] ### Step 6: Back substitute for \( t \) Finally, substituting back for \( t = \tan x \): \[ -\frac{1}{2} \ln |1 - \tan^2 x| + C \] ### Final Answer Thus, the integral \( \int \frac{\tan x \sec^2 x}{1 - \tan^2 x} \, dx \) evaluates to: \[ -\frac{1}{2} \ln |1 - \tan^2 x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(sec^(2)x)/(1-tan^(2)x)dx

int tanx sec^(2)x*dx

Evaluate: (i) int(tan x sec^(2)x)/((a+b tan^(2)x))dx (ii) int sec^(3)x tan xdx

int(tan^(2)x sec^(2)x)/(1+tan^(6)x)dx

int(sec^(2)x)/(sqrt(1-tan^(2)x))dx=?

Evaluate: int tan x sec^(2)x sqrt(1-tan^(2)x)dx

int(sec^(2)x)/(9-tan^(2)x)dx

int(sec^(2)x)/((1+tanx))dx

int(sec^(2)x)/(tan^(2)x+4)dx

int(sec^(2)x)/(tan^(2)x+4)dx