Home
Class 12
MATHS
intlog (1+x^(2))dx....

`intlog (1+x^(2))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log(1 + x^2) \, dx \), we will use the method of integration by parts. Let's go through the steps: ### Step 1: Set up the integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Here, we can choose: - \( u = \log(1 + x^2) \) - \( dv = dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{d}{dx} \log(1 + x^2) \, dx = \frac{1}{1 + x^2} \cdot 2x \, dx = \frac{2x}{1 + x^2} \, dx \] - Integrate \( dv \): \[ v = \int dx = x \] ### Step 3: Apply the integration by parts formula Substituting \( u \), \( v \), \( du \), and \( dv \) into the integration by parts formula: \[ \int \log(1 + x^2) \, dx = x \log(1 + x^2) - \int x \cdot \frac{2x}{1 + x^2} \, dx \] ### Step 4: Simplify the integral Now, simplify the integral: \[ \int x \cdot \frac{2x}{1 + x^2} \, dx = \int \frac{2x^2}{1 + x^2} \, dx \] This can be rewritten as: \[ \int \left( 2 - \frac{2}{1 + x^2} \right) \, dx \] This is because: \[ \frac{2x^2}{1 + x^2} = 2 - \frac{2}{1 + x^2} \] ### Step 5: Integrate the simplified expression Now we can integrate: \[ \int 2 \, dx - \int \frac{2}{1 + x^2} \, dx = 2x - 2 \tan^{-1}(x) + C \] ### Step 6: Combine the results Putting it all together: \[ \int \log(1 + x^2) \, dx = x \log(1 + x^2) - \left( 2x - 2 \tan^{-1}(x) \right) + C \] This simplifies to: \[ \int \log(1 + x^2) \, dx = x \log(1 + x^2) - 2x + 2 \tan^{-1}(x) + C \] ### Final Answer Thus, the final result is: \[ \int \log(1 + x^2) \, dx = x \log(1 + x^2) - 2x + 2 \tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: intlog(2+x^(2))dx

intlog(1+x^2)/x^3dx

intlog(1+x)/x^2dx

If intlog(x^(2)+x)dx=xlog(x^(2)+x)+A , then A=

Evaluate: intlog(2+x^2)dx

int (1-x^2)/(1+x)dx

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

intlog(1-sqrt(x))dx=

int(x+1)/(x^(2)+1)dx

int(1)/(x^(2)+x+1)dx