Home
Class 12
MATHS
inte^x(tanx-log(cosx))dx=...

`inte^x(tanx-log(cosx))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`-e^(x)log cos x+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

inte^x(tanx-logcosx)dx

int(tanx)/(log(cosx))dx=

inte^(x)(tanx+logsecx)dx=?

int(tanx)/(1+cosx)dx=

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

inte^(x)tanx(1+tanx)dx=

int tanx dx=-log |cosx|+c

int(1+tanx)/(e^(-x)cosx)dx is equal to