Home
Class 12
MATHS
int x cos x^(2)dx...

`int x cos x^(2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \cos(x^2) \, dx \), we can use the method of substitution. Here’s a step-by-step solution: ### Step 1: Choose a substitution Let \( t = x^2 \). Then, the differential \( dt \) can be found as follows: \[ dt = 2x \, dx \quad \Rightarrow \quad \frac{1}{2} dt = x \, dx \] ### Step 2: Rewrite the integral Substituting \( t = x^2 \) into the integral, we rewrite it: \[ \int x \cos(x^2) \, dx = \int \cos(t) \cdot \frac{1}{2} dt \] This simplifies to: \[ \frac{1}{2} \int \cos(t) \, dt \] ### Step 3: Integrate Now, we can integrate \( \cos(t) \): \[ \int \cos(t) \, dt = \sin(t) \] Thus, we have: \[ \frac{1}{2} \sin(t) + C \] ### Step 4: Substitute back Now, we substitute back \( t = x^2 \): \[ \frac{1}{2} \sin(x^2) + C \] ### Final Answer Therefore, the integral \( \int x \cos(x^2) \, dx \) is: \[ \frac{1}{2} \sin(x^2) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(cosx-sinx)/(( sin x+ cos x)^(2))dx

Integrate- int(sin x+cos x)^(2)dx

(i) int x^3 sin x^2 dx (ii) int x^3 cos x^2 dx

int(1)/((3sin x+cos x)^(2))dx

int(tan x + cos x)^(2) dx

Evaluate: int x^(3)cos x^(2)dx

int((x)/(x sin x+cos x))^(2)dx=

int(1)/((2 sin x + cos x)^(2))dx

int(1)/((asin x+b cos x)^(2))dx

int e^x cos 2x dx