Home
Class 12
MATHS
int ((1+tanx))/((x+log secx))dx...

`int ((1+tanx))/((x+log secx))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1 + \tan x}{x + \log(\sec x)} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Identify the substitution Let’s set \( t = x + \log(\sec x) \). We will differentiate \( t \) with respect to \( x \). **Hint:** Choose a substitution that simplifies the integral, especially the denominator. ### Step 2: Differentiate \( t \) To differentiate \( t \), we need to find \( \frac{dt}{dx} \): \[ \frac{dt}{dx} = 1 + \frac{d}{dx}(\log(\sec x)) \] Using the chain rule, we have: \[ \frac{d}{dx}(\log(\sec x)) = \frac{1}{\sec x} \cdot \sec x \tan x = \tan x \] Thus, \[ \frac{dt}{dx} = 1 + \tan x \] This implies: \[ dt = (1 + \tan x) \, dx \] **Hint:** Differentiate your substitution to relate \( dt \) and \( dx \). ### Step 3: Rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int \frac{1 + \tan x}{t} \, dx \] Substituting \( dt = (1 + \tan x) \, dx \) gives us: \[ I = \int \frac{1}{t} \, dt \] **Hint:** Substitute \( dx \) in terms of \( dt \) using your earlier result. ### Step 4: Integrate The integral \( \int \frac{1}{t} \, dt \) is a standard integral: \[ I = \log |t| + C \] **Hint:** Remember the integral of \( \frac{1}{t} \) is \( \log |t| \). ### Step 5: Substitute back Now, substitute back \( t = x + \log(\sec x) \): \[ I = \log |x + \log(\sec x)| + C \] **Hint:** Always substitute back to the original variable to express your final answer. ### Final Answer Thus, the integral is: \[ \int \frac{1 + \tan x}{x + \log(\sec x)} \, dx = \log |x + \log(\sec x)| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(tanx)/(log(cosx))dx=

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int(x+tanx)/(x.sinx.secx)dx=

The value of int("ln(tanx))/(sinxcosx) dx is equal to

(i) int(tanx)/((sec x +tanx))dx , (ii) int(1)/((1-sinx))dx

int(secx)/(log(secx+tanx))dx=

int_0^pi (xtanx)/(secx+tanx)dx