Home
Class 12
MATHS
int (sec^(2)(logx ))/(x)dx...

`int (sec^(2)(logx ))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sec^2(\log x)}{x} \, dx \), we will use substitution. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \log x \). Then, the derivative of \( t \) with respect to \( x \) is: \[ \frac{dt}{dx} = \frac{1}{x} \implies dx = x \, dt = e^t \, dt \] Since \( x = e^t \), we can rewrite the integral in terms of \( t \). ### Step 2: Change of Variables Substituting \( t = \log x \) into the integral, we have: \[ I = \int \sec^2(t) \cdot \frac{1}{e^t} \cdot e^t \, dt = \int \sec^2(t) \, dt \] ### Step 3: Integrate The integral of \( \sec^2(t) \) is a standard integral: \[ \int \sec^2(t) \, dt = \tan(t) + C \] ### Step 4: Back Substitute Now, we substitute back \( t = \log x \): \[ I = \tan(\log x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{\sec^2(\log x)}{x} \, dx = \tan(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int("cosec"^(2)(logx))/(x)dx

int(sec^2(logx))/xdx

Evaluate int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

int(logx)/(x)dx=?

int(sqrt((2+logx)))/(x)dx

int((logx)^n)/(x)dx=

int(logx)/(x^3)dx=

int(logx-1)/(x)dx