Home
Class 12
MATHS
int (dx)/(sqrt(4x^(2)-25))...

`int (dx)/(sqrt(4x^(2)-25))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{4x^2 - 25}} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{4x^2 - 25}} \] Notice that \( 4x^2 - 25 \) can be rewritten as \( (2x)^2 - 5^2 \). This suggests that we can use a trigonometric substitution or a direct formula for integrals of the form \( \int \frac{dx}{\sqrt{x^2 - a^2}} \). ### Step 2: Substitute Let \( t = 2x \). Then, we differentiate to find \( dx \): \[ dt = 2dx \quad \Rightarrow \quad dx = \frac{1}{2} dt \] Now we can rewrite the integral in terms of \( t \): \[ I = \int \frac{\frac{1}{2} dt}{\sqrt{t^2 - 5^2}} = \frac{1}{2} \int \frac{dt}{\sqrt{t^2 - 25}} \] ### Step 3: Apply the Integral Formula The integral \( \int \frac{dt}{\sqrt{t^2 - a^2}} \) has a standard result: \[ \int \frac{dt}{\sqrt{t^2 - a^2}} = \ln |t + \sqrt{t^2 - a^2}| + C \] In our case, \( a = 5 \). Thus, we have: \[ I = \frac{1}{2} \left( \ln |t + \sqrt{t^2 - 25}| + C \right) \] ### Step 4: Substitute Back Now we substitute back \( t = 2x \): \[ I = \frac{1}{2} \left( \ln |2x + \sqrt{(2x)^2 - 25}| + C \right) \] This simplifies to: \[ I = \frac{1}{2} \ln |2x + \sqrt{4x^2 - 25}| + C \] ### Final Result Thus, the integral \( \int \frac{dx}{\sqrt{4x^2 - 25}} \) is: \[ \int \frac{dx}{\sqrt{4x^2 - 25}} = \frac{1}{2} \ln |2x + \sqrt{4x^2 - 25}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15A|59 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)-3x+5))

int(dx)/(sqrt(4x^(2)+5))

int(dx)/(sqrt(4x^(2)-9))

int(dx)/(sqrt(4x^(2)-3x))

int(1)/(sqrt(9x^(2)-25))dx

int(dx)/(sqrt(4x^(2)-3x+8))

int(dx)/(x sqrt(4x^(2)+9))

int(dx)/(sqrt(5+4x-x^(2)))