Home
Class 12
MATHS
int(e^(x))/((e^(2x)+1))dx=?...

`int(e^(x))/((e^(2x)+1))dx=?`

A

`cot ^(-1)(e^(x))+C`

B

`tan^(-1)(e^(x))+C`

C

`2 tan ^(-1)(e^(x))+C`

D

`-tan ^(-1)(cosx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^x}{e^{2x} + 1} \, dx \), we will follow these steps: ### Step 1: Set up the integral Let: \[ I = \int \frac{e^x}{e^{2x} + 1} \, dx \] ### Step 2: Use substitution We will use the substitution: \[ t = e^x \] Then, the differential \( dt \) is: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{t} \] ### Step 3: Substitute in the integral Now, substitute \( e^x \) and \( dx \) in the integral: \[ I = \int \frac{t}{t^2 + 1} \cdot \frac{dt}{t} \] This simplifies to: \[ I = \int \frac{1}{t^2 + 1} \, dt \] ### Step 4: Recognize the integral The integral \( \int \frac{1}{t^2 + 1} \, dt \) is a standard integral that equals: \[ \int \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t) + C \] ### Step 5: Substitute back Now, substitute back \( t = e^x \): \[ I = \tan^{-1}(e^x) + C \] ### Final Answer Thus, the integral is: \[ \int \frac{e^x}{e^{2x} + 1} \, dx = \tan^{-1}(e^x) + C \] ---

To solve the integral \( \int \frac{e^x}{e^{2x} + 1} \, dx \), we will follow these steps: ### Step 1: Set up the integral Let: \[ I = \int \frac{e^x}{e^{2x} + 1} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int((e^(2x))/(e^(2x)-1))dx=

int(e^(x)dx)/(e^(x)-1)

int(e^(2x)+1)/(e^(2x)-1)dx=

int(e^(2x))/(1+e^(2x))dx=

" (6) "int(e^(2x))/(e^(2x)+1)dx

int(e^(x))/(sqrt(e^(2x)-1))dx=

int(e^(x)+2)/(e^(x)+1)dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(5x)-1)/(e^(2x))dx

I=int(e^(2x)-1)/(e^(2x))dx