Home
Class 12
MATHS
int(dx)/((sin^(2)x-4cos^(2)x))=?...

`int(dx)/((sin^(2)x-4cos^(2)x))=?`

A

`(1)/(4)log |(tanx-2)/(tanx+2)|+C`

B

`(1)/(4)log |(tanx+2)/(tanx-2)|+C`

C

`(1)/(4)log |(1-tan x)/(1+tanx)|+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

On dividing Nr and Dr by `cos^(2)x`, we get
`I=int(sec^(2)x)/((tan ^(2)x-4))dx=int (dt)/((t^(2)-4)),"where"tan x=t and sec^(2)xdx=dt`
`=int (dt)/({t^(2)-2^(2)})=(1)/((2xx2))log |(t-2)/(t+2)|+c=(1)/(4)log |(tan x-2)/(tanx+2)|+C.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(3sin^(2)x+4cos^(2)x)

int(dx)/(4sin^(2)x+9cos^(2)x)

int (dx)/((4sin^(2)x+5cos^(2)x))=?

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(dx)/((3sin x+4cos x)^(2))

int(cos x)/((4+sin^(2)x)(5-4cos^(2)x))backslash dx

int(dx)/(3+2sin2x+4cos2x)=

Evaluate: int(1)/(sin^(4)x cos^(2)x)dx

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx