Home
Class 12
MATHS
int (dx)/((4sin^(2)x+5cos^(2)x))=?...

`int (dx)/((4sin^(2)x+5cos^(2)x))=?`

A

`(1)/(2)tan^(-1)((tanx)/(sqrt(5)))+C`

B

`(1)/(sqrt(5))tan^(-1)((tanx)/(sqrt(5)))+C`

C

`(1)/(2sqrt(5))tan^(-1)((2tanx)/(sqrt(5)))+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{4 \sin^2 x + 5 \cos^2 x} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{4 \sin^2 x + 5 \cos^2 x} \] ### Step 2: Divide by \( \cos^2 x \) To simplify the expression, we divide the numerator and denominator by \( \cos^2 x \): \[ I = \int \frac{\frac{1}{\cos^2 x}}{\frac{4 \sin^2 x}{\cos^2 x} + 5} \, dx \] This simplifies to: \[ I = \int \frac{\sec^2 x}{4 \tan^2 x + 5} \, dx \] ### Step 3: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Thus, we can rewrite the integral as: \[ I = \int \frac{dt}{4t^2 + 5} \] ### Step 4: Factor out the Constant We can factor out the constant from the denominator: \[ I = \int \frac{dt}{4(t^2 + \frac{5}{4})} \] This can be simplified to: \[ I = \frac{1}{4} \int \frac{dt}{t^2 + \frac{5}{4}} \] ### Step 5: Use the Standard Integral Formula The integral \( \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \) can be applied here, where \( a = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \): \[ I = \frac{1}{4} \cdot \frac{2}{\sqrt{5}} \tan^{-1} \left( \frac{t}{\frac{\sqrt{5}}{2}} \right) + C \] ### Step 6: Substitute Back for \( t \) Now we substitute back \( t = \tan x \): \[ I = \frac{1}{2\sqrt{5}} \tan^{-1} \left( \frac{2 \tan x}{\sqrt{5}} \right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{4 \sin^2 x + 5 \cos^2 x} = \frac{1}{2\sqrt{5}} \tan^{-1} \left( \frac{2 \tan x}{\sqrt{5}} \right) + C \]

To solve the integral \( \int \frac{dx}{4 \sin^2 x + 5 \cos^2 x} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{4 \sin^2 x + 5 \cos^2 x} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Exercise 15B|40 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/((sin^(2)x-4cos^(2)x))=?

int(dx)/(4sin^(2)x+9cos^(2)x)

int(dx)/(3sin^(2)x+4cos^(2)x)

int(1)/(sin^(2)x-4 cos^(2)x)dx

int_(0)^(pi//2) (dx)/(4sin^(2) x + 5 cos^(2)x)

int(5)/(sin^(2)x cos^(2)x)dx

int(cos x)/((4+sin^(2)x)(5-4cos^(2)x))backslash dx

int(dx)/(sin^2x+cos^2x+5)=

Evaluate the following integrals: int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

(i) int_(0)^(pi//2)(sin^(7)x)/((sin^(7)x+cos^(7)x))dx=(pi)/(4) (ii) int_(0)^(pi//2)(sin^(5)xdx)/((sin^(5)x+cos^(5)x))dx=(pi)/(4)