Home
Class 12
MATHS
int(cos x)/(sqrt(4-sin^(2)x))=?...

`int(cos x)/(sqrt(4-sin^(2)x))=?`

A

`sin^(-1)""(x)/(2)+C`

B

`sin^(-1)""((1)/(2)cosx)+C`

C

`sin^(-1)(2sinx)+C`

D

`sin^(-1)""((1)/(2)sinx)+C`

Text Solution

Verified by Experts

The correct Answer is:
D

Putting sin `x=t` and `cos x dx=dt,` we get
`I=int(dt)/(sqrt(4-t^(2)))=(1)/(2)int (dx)/(sqrt(2^(2)-t^(2)))=sin^(-1)""(t)/(2)+C +sin^(-1)((1)/(2)sinx)+C.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

The value of int(sin x+cos x)/(sqrt(1-sin2x))dx is equal to sqrt(sin2x)+C(b)sqrt(cos2x)+C(c)+-sin x-cos x)+C(d)+-log(sin x-cos x)+C

int(cos x-sin x)/(sqrt(8-sin2x))dx=sin^(-1)((sin x+cos x)/(a))+c

int(sin x cos x)/(sqrt(1-sin^(4)x))*dx

int(sin x-cos x)/(sqrt(1-sin2x))e^(sin x)cos xdx, where [x in((pi)/(4),(3 pi)/(4))]

int(cos x-sin x)/(sqrt(sin2x))dx

int((sin x+cos x)/(sqrt(sin2x))dx

int(sin^(3)x cos x)/(sqrt(a-sin^(2)x)sqrt(a+sin^(2)x))backslash dx=

int(cos xdx)/(sqrt(1+sin x))=2((sin x)/(2)+(cos x)/(2))+c

int(sec x)/(sqrt(2sin(x+A)cos x))*dx