Home
Class 12
MATHS
int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c...

`int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c`, then k =

A

`sin^(-1)(2^(x))log2+C`

B

`(sin^(-1)(2^(x)))/(log2)+C`

C

`sin^(-1)(x-1)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

Put `2^(x)=t and 2^(x) log 2dx=dt.`
`therefore I=(1)/(log2)int(dt)/(sqrt(1-t^(2)))=(1)/(log2)sin^(-1)t+C=(1)/((log2))sin^(-1)(2^(x))+C.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(2))+c

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(1+4x^(2)))

int(1)/(sqrt(4-x^(2)))dx

int(2x)/(sqrt(1-x^(2)-x^(4)))dx=

int(a^(4))/(sqrt(1-a^(2x)))dx

int(2x)/(sqrt(1-x^(2)-x^(4)))dx