Home
Class 12
MATHS
int (dx)/sqrt(2x-x^2)...

`int (dx)/sqrt(2x-x^2)`

A

`sin^(-1)(x+1)+C`

B

`sin^(-1)(x-2)+C`

C

`sin^(-1)(x-1)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`sqrt(2x-x^(2))=sqrt(1-(1-2x+x^(2)))=sqrt(1-(x-1)^(2))`
`therefore I=int (dx)/(sqrt(1-(x-1)^(2)))=int (dt)/(sqrt(1-t^(2))),"where"(x-1)=t`
`sin^(-1)t+c =sin ^(-1)(x-1)+C.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/sqrt(2-3x-x^(2))=

int(dx)/sqrt(2-3x-x^(2))=fog(x)+C then

Evaluate int dx/sqrt(x-2x^2)

int(dx)/(sqrt(2+2x-x^(2)))=?

Find int(dx)/(sqrt(3-2x-x^(2)))

int(dx)/(sqrt(8+2x-x^(2)))

integrate int(dx)/(sqrt(3-2x-x^(2)))

The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

Evaluate: int(dx)/sqrt(2-6x-9x^(2)) dx

2. int(x-1)/(sqrt(2x-x^(2)))dx