Home
Class 12
MATHS
int(dx)/(sqrt(x-x^2)) is equal to...

`int(dx)/(sqrt(x-x^2))` is equal to

A

`sin^(-1)(x-1)+C`

B

`sin^(-1)(x+1)+C`

C

`sin^(-1)(2x-1)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

`(x-x^(2))=(1)/(4)-(x^(2)-x+(1)/(4))=((1)/(2))^(2)-(x-(1)/(2))^(2)`
`therefore I=int(dx)/(sqrt(((1)/(2))^(2)-(x-(1)/(2))^(2)))=int(dx)/(sqrt(((1)/(2))^(2)-t^(2)))=sin^(-1)""(t)/(((1)/(2)))+C`
`=sin ^(-1)2t+C=sin^(-1)(x-(1)/(2))+C =sin^(-1)(2x-1)+C.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(2ax-x^(2))) is equal to

The integral int(dx)/(sqrt(2-3x-x^(2))) is equal to

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

int(dx)/(sqrt(x-x^(2))) equal is :

int(dx)/(sqrt(5x-6-x^(2))) equals

int(dx)/(sqrt(3-5x-x^(2))) equals

int(dx)/(sqrt((1-x)(x-2))) is equal to

The value of int(dx)/((1+sqrt(x))(sqrt(x-x^(2)))) is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to