Home
Class 12
MATHS
int(dx)/(sqrt(1-e^(2x)))=?...

`int(dx)/(sqrt(1-e^(2x)))=?`

A

`log |e^(x)+sqrt(e^(2x)-1)|+C`

B

`log |e^(-x)+sqrt(e^(-2x)-1)|+C`

C

`-log |e^(-x)+sqrt(e^(-2x)-1)|+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{1 - e^{2x}}} \), we will proceed step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{1 - e^{2x}}} \] ### Step 2: Substitute \( e^{-x} \) To simplify the integral, we can use the substitution \( t = e^{-x} \). Then, we have: \[ dx = -\frac{dt}{t} \] This substitution transforms the integral: \[ I = \int \frac{-\frac{dt}{t}}{\sqrt{1 - (e^{-x})^2}} = \int \frac{-dt}{t \sqrt{1 - t^2}} \] ### Step 3: Simplify the Integral Now, we can rewrite the integral as: \[ I = -\int \frac{dt}{t \sqrt{1 - t^2}} \] ### Step 4: Use a Known Integral Formula We know from integral tables that: \[ \int \frac{dt}{t \sqrt{1 - t^2}} = \ln |t + \sqrt{t^2 - 1}| + C \] Thus, we can write: \[ I = -\ln |t + \sqrt{t^2 - 1}| + C \] ### Step 5: Substitute Back for \( t \) Now we substitute back \( t = e^{-x} \): \[ I = -\ln |e^{-x} + \sqrt{(e^{-x})^2 - 1}| + C \] ### Step 6: Simplify the Expression We simplify the expression: \[ I = -\ln \left| e^{-x} + \sqrt{e^{-2x} - 1} \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{dx}{\sqrt{1 - e^{2x}}} = -\ln \left| e^{-x} + \sqrt{e^{-2x} - 1} \right| + C \] ---

To solve the integral \( \int \frac{dx}{\sqrt{1 - e^{2x}}} \), we will proceed step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{1 - e^{2x}}} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-e^(x)))

int(dx)/(sqrt(e^(2x)-1))=

int(dx)/(sqrt(2e^(x)-1))=

int(dx)/(sqrt(e^(x)-1))

int(e^(2x))/(sqrt(1-e^(2x)))dx

Evaluate int(e^(x))/(sqrt(1-e^(2x)))dx

Evaluate: (i) int(e^(x))/(sqrt(4-e^(2x)))dx (ii) int(x^(2))/(sqrt(1-x^(6)))dx

Evaluate : int (1)/(sqrt(1-e^(2x))) " dx "

int(2e^(x))/(sqrt(4-e^(2x)))dx