Home
Class 12
MATHS
int (x^(2))/(sqrt(x^(2)+2x^(3)+3))dx=?...

`int (x^(2))/(sqrt(x^(2)+2x^(3)+3))dx=?`

A

`(1)/(3)log |(x^(3)+1)+sqrt(x^(6)+2x^(3)+3)|+C`

B

` log |x^(3)+sqrt(x^(6)+2x^(3)+3)|+C`

C

`(1)/(3) log |(x^(3)+1)-sqrt(x^(6)+2x^(3)+3)|+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2}{\sqrt{x^6 + 2x^3 + 3}} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, let's rewrite the expression under the square root: \[ x^6 + 2x^3 + 3 \] This expression can be analyzed for simplification, but for now, we will proceed with the integration as it is. ### Step 2: Factor out \( x^3 \) from the square root Notice that we can factor \( x^3 \) from the terms inside the square root: \[ \sqrt{x^6 + 2x^3 + 3} = \sqrt{x^3(x^3 + 2) + 3} \] This does not simplify the integral directly, so we will keep the original expression for now. ### Step 3: Use substitution Let’s use a substitution to simplify the integral. We can let: \[ u = x^3 + 1 \quad \Rightarrow \quad du = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{du}{3x^2} \] Now, we need to express \( x^2 \) in terms of \( u \): \[ x^3 = u - 1 \quad \Rightarrow \quad x = (u - 1)^{1/3} \] Thus, \[ x^2 = ((u - 1)^{1/3})^2 = (u - 1)^{2/3} \] ### Step 4: Substitute in the integral Now we substitute \( x^2 \) and \( dx \) into the integral: \[ \int \frac{(u - 1)^{2/3}}{\sqrt{(u - 1)^2 + 2(u - 1) + 3}} \cdot \frac{du}{3(u - 1)^{2/3}} \] This simplifies to: \[ \frac{1}{3} \int \frac{1}{\sqrt{(u - 1)^2 + 2(u - 1) + 3}} \, du \] ### Step 5: Simplify the expression under the square root Now, simplify the expression inside the square root: \[ (u - 1)^2 + 2(u - 1) + 3 = u^2 - 2u + 1 + 2u - 2 + 3 = u^2 + 2 \] Thus, the integral becomes: \[ \frac{1}{3} \int \frac{1}{\sqrt{u^2 + 2}} \, du \] ### Step 6: Solve the integral The integral \( \int \frac{1}{\sqrt{u^2 + 2}} \, du \) can be solved using the formula: \[ \int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln |x + \sqrt{x^2 + a^2}| + C \] In our case, \( a^2 = 2 \), so we have: \[ \int \frac{1}{\sqrt{u^2 + 2}} \, du = \ln |u + \sqrt{u^2 + 2}| + C \] ### Step 7: Substitute back Now substitute back for \( u \): \[ = \ln |(x^3 + 1) + \sqrt{(x^3 + 1)^2 + 2}| + C \] ### Step 8: Final expression Thus, the final result of the integral is: \[ \frac{1}{3} \ln |(x^3 + 1) + \sqrt{(x^3 + 1)^2 + 2}| + C \]

To solve the integral \( \int \frac{x^2}{\sqrt{x^6 + 2x^3 + 3}} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, let's rewrite the expression under the square root: \[ x^6 + 2x^3 + 3 \] This expression can be analyzed for simplification, but for now, we will proceed with the integration as it is. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int (x^2-2)/sqrt(3-x^2) dx

int((x-3)^(2))/(sqrt(x))dx

int((x-3)^(2))/(sqrt(x))dx

int x^(3)sqrt(x^(2)-a)dx

int (dx)/(x sqrt(x^2+3))

int((2x-1)dx)/(sqrt(x^(2)-x+3))

int((x-2 )dx)/(sqrt(x^(2)-4x+3)

int(3)/(sqrt((x^(2)+2x)))dx

int(x+2)/(sqrt(x^(2)+4x+3))dx

int(x)/(sqrt(2x^(2)+3))dx