Home
Class 12
MATHS
int sqrt(1-9x^(2))dx=?...

`int sqrt(1-9x^(2))dx=?`

A

`(x)/(2)sqrt(1-9x^(2))+(1)/(18)sin^(-1)3x+C`

B

`(3x)/(2)sqrt(1-9x^(2))+(1)/(6)sin^(-1)3x+C`

C

`(x)/(2)sqrt(1-9x^(2))+(1)/(6)sin^(-1)3x+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 - 9x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sqrt{1 - 9x^2} \, dx \] ### Step 2: Factor out the coefficient of \(x^2\) Notice that \(9x^2\) can be rewritten as \((3x)^2\). Thus, we can rewrite the integral as: \[ I = \int \sqrt{1 - (3x)^2} \, dx \] ### Step 3: Use a Trigonometric Substitution We can use the substitution \(3x = \sin(\theta)\), which implies: \[ x = \frac{1}{3} \sin(\theta) \quad \text{and} \quad dx = \frac{1}{3} \cos(\theta) \, d\theta \] Substituting these into the integral gives: \[ I = \int \sqrt{1 - \sin^2(\theta)} \cdot \frac{1}{3} \cos(\theta) \, d\theta \] ### Step 4: Simplify the Integral Using the identity \(1 - \sin^2(\theta) = \cos^2(\theta)\), we can simplify: \[ I = \int \cos(\theta) \cdot \frac{1}{3} \cos(\theta) \, d\theta = \frac{1}{3} \int \cos^2(\theta) \, d\theta \] ### Step 5: Use the Power Reduction Formula We can use the power reduction formula: \[ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \] Thus, the integral becomes: \[ I = \frac{1}{3} \int \frac{1 + \cos(2\theta)}{2} \, d\theta = \frac{1}{6} \int (1 + \cos(2\theta)) \, d\theta \] ### Step 6: Integrate Now we can integrate: \[ I = \frac{1}{6} \left( \theta + \frac{1}{2} \sin(2\theta) \right) + C \] ### Step 7: Substitute Back Recall that \(3x = \sin(\theta)\), so \(\theta = \sin^{-1}(3x)\). Therefore, we can substitute back: \[ I = \frac{1}{6} \left( \sin^{-1}(3x) + \frac{1}{2} \sin(2 \sin^{-1}(3x)) \right) + C \] ### Step 8: Simplify Further Using the double angle identity \( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \): \[ \sin(2 \sin^{-1}(3x)) = 2(3x)\sqrt{1 - (3x)^2} = 6x\sqrt{1 - 9x^2} \] Thus, we have: \[ I = \frac{1}{6} \left( \sin^{-1}(3x) + 3x\sqrt{1 - 9x^2} \right) + C \] ### Final Result The final result for the integral is: \[ I = \frac{1}{6} \sin^{-1}(3x) + \frac{1}{2} x \sqrt{1 - 9x^2} + C \]

To solve the integral \( \int \sqrt{1 - 9x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sqrt{1 - 9x^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions I|32 Videos
  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Objective Questions|41 Videos
  • INVERSE TRIGNOMETRIC FUNCTIONS

    RS AGGARWAL|Exercise Objective Questons|57 Videos

Similar Questions

Explore conceptually related problems

int sqrt(4-9x^(2))dx

int sqrt(9-4x^(2))dx=?

int sqrt(9x^(2)+16)dx=?

int sqrt(4x^(2)-9)dx

Evaluate: int sqrt(9-x^(2))dx

int sqrt(9 -4x^(2)) dx

Evaluate: int sqrt(9-x^(2))dx

int1/sqrt(1-6x-9x^(2))dx is equal to

int sqrt(9-x^2) dx

int sqrt((x+1)^(2)+9)dx