Home
Class 12
MATHS
Find the volume of the parallelepiped wh...

Find the volume of the parallelepiped whose edges are represented by the vectors `vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \(\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}\), \(\vec{b} = \hat{i} + 2\hat{j} - \hat{k}\), and \(\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}\), we will use the formula for the volume of a parallelepiped given by the scalar triple product of the vectors. The volume \(V\) can be calculated as: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] ### Step 1: Calculate the cross product \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we can use the determinant of a matrix formed by the unit vectors and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = (2)(2) - (-1)(-1) = 4 - 1 = 3\) 2. \(\begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} = (1)(2) - (-1)(3) = 2 + 3 = 5\) 3. \(\begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (2)(3) = -1 - 6 = -7\) Putting it all together: \[ \vec{b} \times \vec{c} = 3\hat{i} - 5\hat{j} - 7\hat{k} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we need to calculate the dot product: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (2\hat{i} - 3\hat{j} + 4\hat{k}) \cdot (3\hat{i} - 5\hat{j} - 7\hat{k}) \] Calculating the dot product: \[ = 2 \cdot 3 + (-3) \cdot (-5) + 4 \cdot (-7) \] \[ = 6 + 15 - 28 \] \[ = 21 - 28 = -7 \] ### Step 3: Calculate the volume Finally, the volume \(V\) is the absolute value of the dot product: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = |-7| = 7 \] Thus, the volume of the parallelepiped is \(7\) cubic units. ---

To find the volume of the parallelepiped formed by the vectors \(\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}\), \(\vec{b} = \hat{i} + 2\hat{j} - \hat{k}\), and \(\vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}\), we will use the formula for the volume of a parallelepiped given by the scalar triple product of the vectors. The volume \(V\) can be calculated as: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] ### Step 1: Calculate the cross product \(\vec{b} \times \vec{c}\) ...
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Objective Questions|34 Videos
  • PRODUCT OF THREE VECTORS

    RS AGGARWAL|Exercise Exercise 25A|15 Videos
  • PROBABILITY DISTRIBUTION

    RS AGGARWAL|Exercise Exercise 32|32 Videos
  • RELATIONS

    RS AGGARWAL|Exercise Objective Questions|22 Videos

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) and vec(c)=2hat(i)+hat(j)-hat(k) .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i+3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j+2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2hat i-3hat j+4hat k,vec b=hat i+hat i+2hat j-hat k,vec c=3hat i-hat j-2hat k

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

The three vector vec(A) = 3hat(i)-2hat(j)+hat(k), vec(B)= hat(i)-3hat(j)+5hat(k) and vec(C )= 2hat(i)+hat(j)-4hat(k) from

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k,vec c=hat i+2hat j-hat k

RS AGGARWAL-PRODUCT OF THREE VECTORS-Exercise 25B
  1. Find a vector in the direction of vector 2 hat i-3 hat j+6 hat k which...

    Text Solution

    |

  2. If veca=2hati+2hatj+3hatk, vecb=-hati+2hatj+hatk and vecc=3hati+hatj t...

    Text Solution

    |

  3. Write a vector of magnitude 15 units in the direction of vecor (hat(i...

    Text Solution

    |

  4. If vec a= hat i+ hat j+ hat k , vec b=4 hat i-2 hat j+3 hat k and ve...

    Text Solution

    |

  5. Write the projection of the vector hat i- hat j on the vector ha...

    Text Solution

    |

  6. Writhe the angle between two vectors vec a\ a n d\ vec b"\ " with ma...

    Text Solution

    |

  7. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat ka n d vec b=3 ...

    Text Solution

    |

  8. Find the angle between two vectors vec(a) and vec(b) with magnitudes 1...

    Text Solution

    |

  9. Given that -> adot -> b=0 and -> axx -> b= ->0 . What can you ...

    Text Solution

    |

  10. Write the value of p for which vec a=3 hat i+2 hat j+9 hat k\ a n d\ ...

    Text Solution

    |

  11. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  12. Find the volume of the parallelepiped whose edges are represented by t...

    Text Solution

    |

  13. Show that the vectors vec a=-2 hat i-2 hat j+4 hat k ,\ vec b=-2 ...

    Text Solution

    |

  14. If vec(a)=(2hat(i)+6hat(j)+27hat(k)) and vec(b)=(hat(i)+lambda(j)+mu h...

    Text Solution

    |

  15. If |vec axx vec b| = |vec a.vec b|, then find angle between vec a an...

    Text Solution

    |

  16. When does |vec(a)+vec(b)|=|vec(a)|+|vec(b)| hold?

    Text Solution

    |

  17. Find the direction cosines of a vector which is equally inclined to t...

    Text Solution

    |

  18. If P-=(1,5,4) and Q-=(4,1,-2) find the direction ratios of vec(PQ)

    Text Solution

    |

  19. Find the direction cosines of the vector hat i+2 hat j+3 hat k.

    Text Solution

    |

  20. If hat(a) and hat(b) are unit vectors such that (hat(a) + hat(b)) is a...

    Text Solution

    |