Home
Class 11
MATHS
cotx+tanx=2"cosec "x...

`cotx+tanx=2"cosec "x`

Text Solution

Verified by Experts

The correct Answer is:
`x=2npi+-(pi)/(3), "where " n in I`

The given equation is `(cosx)/(sinx)+(sinx)/(cosx)=(2)/(sinx)rArrcos^(2)x+sin^(2)x=2cosx`
`rArrcosx=(1)/(2)="cos "(pi)/(3)`
`rArrx=2npi+-(pi)/(3), "where "n inI`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15E)|10 Videos

Similar Questions

Explore conceptually related problems

Find the general solution of : cotx+tanx=2cosecx .

If int_(0)^(pi//2)(cotx)/(cotx+"cosec "x)dx=m(pi+n) , them m * n is equal to

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

int(secx."cosec"x)/(2cotx-secx"cosec x")dx di equal to

The number of solutions of the equation |cot x|=cotx+"cosec"x in [0,10pi] is /are

int cotx cosec^2x dx

The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx| , is

The given expression f(x)=(1)/(tanx+cotx+secx+"cosec x") is equivalent to