Home
Class 12
MATHS
Let vec(a) =hat(i)+2hat(j)+hat(k)," " ve...

Let `vec(a) =hat(i)+2hat(j)+hat(k)," " vec(b) =hat(i)-hat(j)+hat(k)," "vec(c )=hat(i)+hat(j) -hat(k).`
A vector coplanar to `vec(a)` and `vec(b)` has a projections along `overset(to)(c )` of magnitude `(1)/(sqrt(3))` then the vector is

A

`4hat(i) -hat(j)+4hat(k)`

B

`4hat(i)+hat(j)-4hat(k)`

C

`2hat(i)+hat(j)+hat(k)`

D

None of the these

Text Solution

Verified by Experts

The correct Answer is:
A

Let vector `vec(r )` be coplanar to `vec(a) " and " vec(b)`
`:. ,vec(r ) = vec(a) + tvec(b)`
`rArr vec(r ) =( hat(i) + 2hat(j) + hat(k)) +t(hat(i)- hat(j) + hat(k))`
`=hat(i) (1+t)+ hat(j) (2-t) + hat(k) (1+t)`
the projection of `vec(r ) " on " vec( c ) = (1)/(sqrt(3))`
`rArr " " (vec(r ) ". " vec(c ))/(|vec( c) |) = (1)/(sqrt(3))`
`rArr (|1.(1+t)+1. (2-t)-1.(1+t)|)|(sqrt(3)) = (1)/(sqrt(3))`
`rArr (2-t) =+- 1 rArr t=1 " or " 3`
When t=1 we have `vec(v) =2hat(i) + hat(j) + 2hat(k)`
When t=3 we have `vec(v) =4hat(i) - hat(j) + 4hat(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Objective Question II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Numerical Value|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is