Home
Class 12
MATHS
If overset(to)(a),overset(to)(b),overset...

If `overset(to)(a),overset(to)(b),overset(to)(c )` are three non-zero , non-coplanar vectors and `overset(to)(b)_(1)=overset(to)(b) -.(overset(to)b.overset(to)(a))/(|overset(to)(a)|) overset(to)(a) , overset(to)(b)_(2) +.(overset(to)(b).overset(to)(a))/(|overset(to)(a)|^(2))overset(to)(a)`
`overset(to)(c)_(1) =overset(to)(c)-.(overset(to)(c).overset(to)a)/(|overset(to)(a)|^(2))overset(to)(a)-.(overset(to)(c).overset(to)(b))/(|overset(to)(b)|^(2))overset(to)(b),overset(to)c_(2)=overset(to)(c) -.(overset(to)(c).overset(to)(a))/(|overset(to)(a)|^(2))overset(to)(a)-.(overset(to)(c).overset(to)(b)_(1))/(|overset(to)(b)|^(2))overset(to)(b)_(1)`
`overset(to)(c)_(3) =overset(to)(c) -.(overset(to)(c).overset(to)(a))/(|overset(to)(a)|^(2))overset(to)(a)-.(overset(to)(c).overset(to)(b)_(2))/(|overset(to)(b)_(2)|^(2))overset(to)(b)_(2).overset(to)(c)_(4)=overset(to)(a) -.(overset(to)(c).overset(to)(a))/(|overset(to)(a)|^(2))overset(to)(a)`
Then which of the following is a set of mutually orthogonal vectors ?

A

`{overset(to)(a),overset(to)(b)_(1),overset(to)(c)_(1)}`

B

`{overset(to)(a),overset(to)(b)_(1),overset(to)(c)_(2)}`

C

`{overset(to)(a),overset(to)(b)_(2),overset(to)(c)_(3)}`

D

`{overset(to)(a),overset(to)(b)_(3),overset(to)(c)_(4)}`

Text Solution

Verified by Experts

The correct Answer is:
B

Since `vec(b)_(1) = vec(b) - (vec(b).vec(a))/(|vec(a)|^(2)) vec(a) , vec(b)_(1) =vec(b) + (vec(b).vec(a))/(|vec(a)|^(2)) vec(a)`
`" and " vec( c)_(1) =vec(c ) - (vec( c) "."vec( a))/(|vec(a)|^(2)) vec(a) - (vec(c )"."vec(b))/(|vec(b)|^(2)) vec(b) vec( c)_(2) = vec( c) - (vec( c). vec(a))/(|vec(a)|^(2)) vec(a) - (vec(c ) "."vec(b)_(1))/(|vec(b)|^(2)) vec(b)_(1)`
`vec(c)_(3) =vec(c) -(vec(c ).vec(a))/(|vec(a)|^(2))vec(a) -(vec(c ).vec(b)_(2))/(|vec(b)_(2)|^(2)) vec(b)_(2), vec(c )_(4) =vec(a) -(vec(c ). vec(a))/(|vec(a)|^(2))vec(a)`
Which shows `vec(a). vec(b)_(1) =0=vec(a) . vec(c )_(2)=vec(b)_(1).vec(c )_(2)`
So `{vec(a),vec(b)_(1),vec(c )_(2)}` are mutually orthogonal vectors.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Objective Question II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Numerical Value|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If vectors overset(to)(a) , overset(to)(b) , overset(to)( C) are coplanar then show that |{:(overset(to)(a),,overset(to)(b),,overset(to)(c )),(overset(to)(a)"."overset(to)(a),,overset(to)(a)"."overset(to)(b),,overset(to)(a)"."overset(to)(c )),(overset(to)(b)"."overset(to)(a),,overset(to)(b)"."overset(to)(b),,overset(to)(b)"." overset(to)(c )):}|

if overset(to)(b) " and " overset(to)(c ) are any two non- collinear unit vectors and overset(to)(a) is any vector then (overset(to)(a).overset(to)(b))overset(to)(b).(overset(to)(a).overset(to)(c )) overset(to)(c ) + .(overset(to)(a).(overset(to)(b)xxoverset(to)(c)))/(|overset(to)(b)xxoverset(to)(c)|^(2)).(overset(to)(b)xxoverset(to)(c))=.........

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

For non- zero vectors overset(to)(a) , overset(to)(b), overset(to)(c )|,(overset(to)(a)xx overset(to)(b)), Overset(to)(c )| =|overset(to)(a)||overset(to)(b)||overset(to)(c )| holds if and only if