Home
Class 12
MATHS
if vec(a),vec(b) " and " vec(c ) are u...

if `vec(a),vec(b) " and " vec(c )` are unit vectors then
`|vec(a)-vec(b)|^(2)+|vec(b)-vecc|^(2)+|vec(c)-vec(a)|^(2)` does not exceed

A

4

B

9

C

8

D

6

Text Solution

Verified by Experts

The correct Answer is:
B

Now `(vec(a) +vec(b) + vec(c ))^(2) = Sigma vec(a)^(2) +2Sigma vec(a) ". " vec(b) le 0`
`rArr 2 Sigma vec(a)". "vec(b) ge -3`
Now `Sigma|vec(a)-vec(b)|^(2)=2Sigmavec(A)^(2)-2Sigma vec(a)". "vec(b) le 2 (3) +3 =9`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Objective Question II)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Scalar Product of two vectors (Numerical Value|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors,then |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2) does not exceed 4 b.9c.8 d.6

If vec a, vec b and vec c are unit vectors then | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) is equal to

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

If vec(a), vec(b) and vec(c) are unit vectors such that vec(a)+2vec(b)+2vec(c)=0 then |vec(a)timesvec(c)| is equal to

If vec a, vec b and vec c are unit vectors satisfying | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 9 then | 2vec a + 7vec b + 7vec c | =

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec(a) and vec(b) are unit vectors, then what is the value of |vec(a) xx vec(b)|^(2) + (vec(a).vec(b))^(2) ?

Let vec a, vec b, vec c are unit vector where | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c + vec a | ^ (2) = 3 then | vec a + 2vec b + 3vec c | ^ (2) is equal to

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is