Home
Class 12
MATHS
If overset(to)(A) , overset(to)(B) " an...

If `overset(to)(A) , overset(to)(B) " and " overset(to)( c) ` are vectors such that `|overset(to)(B) |=|overset(to)( C ) |` . Prove that `| (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)`

Text Solution

Verified by Experts

Now `(vec(A) + vec(B)) xx (vec(A) + vec(C ))`
`= vec(A) xx vec(A) + vec(B) xx vec(A) + vec(A) xx vec(C ) + vec(B) xx vec(C )`
`=vec(B) xx vec(A) + vec(A) xx vec(C ) + vec(B) xx vec( C) [:' vec(A) xx vec(A)=0]`
`:. [(vec(A) +vec(B)) xx (vec(A) + vec(C ))] xx (vec(B) xx vec( C))`
`=[(vec(B) xx vec(A) +vec(A) xx vec(C ) + vec(B) xx vec(C )] xx (vec(B) xx vec(C )`
`=(vec(B) xxvec(A)) xx (vec(B) xx vec(C )) +(vec(A) xx vec(C )) xx (vec(B) xx vec(C ))`
`={(vec(B) xx vec(A)) ". " vec(C )} vec(B) - {(vec(B)+vec(A))"." vec(B)} vec(C)`
`+{(vec(A) xx vec(C)) "." vec(C )} vec(B) -{(vec(A) xx vec(C)) "." vec(B) } vec(C)`
` [ :' (vec(a) xx vec(b) ) xx vec(c ) = (vec(a) ". " vec(c )) vec(b) - (vec(b) " ." vec(c )) vec(a)]`
`=[vec(B) vec(A) vec(C )] vec(B) - [vec(A) vec(C) vec(B) ] vec(C)`
`[ :' [vec(a) vec(b) vec(c )] =0` if any two of `vec(a) , vec(b) ,vec(c )` are equal ]
`= [vec(A) vec(C ) vec(B) ] (vec(B) -vec(C))`
Now `[(vec(A) +vec(B)) xx (vec(A) + vec(C ))] xx (vec(B) xx vec( C)) " ." (vec(B) xx vec(C ))`
`=([vec(A) vec(C) vec(B)] {vec(B) -vec(C )}) ". " (vec(B) +vec(C))`
`=[vec(A)vec(C) vec(B)]{(vec(B) -vec(C )) .(vec(B) +vec(C ))}`
`=[(vec(A) vec(C )vec(B)] {|vec(B)|^(2) -|vec(C)|^(2)}=vec(0) [ :' |vec(B)|=|vec(C)|`given ]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Interger Answer Type Questions)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II)|4 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Fill in the Blank)|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to