Home
Class 12
MATHS
If the vectors overset(to)(b), overset...

If the vectors `overset(to)(b), overset(to)(c ) , overset(to)(d)` are not coplanar then prove than the vectors `(overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b))`
`+(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c))` is parallel to `overset(to)(a) `

Text Solution

Verified by Experts

Considering first part `(vec(a) xx vec(b)) xx (vec(c ) xx vec(d))`
Let `vec(c ) xx vec(d) = vec( e)`
`(vec(a) xx vec(b)) xx vec(e ) = (vec(a )"." vec(e )) vec(b) - (vec(b) "." vec(e )) vec(a)`
`[:' (vec(a) xx vec(b)) xx vec( c) = (vec(a) xx vec(c ) ) vec(b) - (vec(b)". " vec(c )) vec(a)]`
`={vec(a) " ." (vec(c ) xx vec( d))} vec(b) -{vec(b).(vec(c ) xx vec(d))}vec(d)`
` = [vec(a) vec(c) vec(d)]vec(b) -[vec(b) vec(c ) vec(d)]vec(a)`
Similarly
`(vec(a) xx vec(c )) xx (vec(d) xx vec(b)) = [ vec(a) vec(d) vec(b)] vec( c) - [vec(c) vec(d) vec(b)] vec(a)`
` =[vec(a) vec(d) vec(b)]vec(c )- [vec(b) vec( c) vec(d )]vec(a)`
Also `(vec(a) xx vec(d)) xx (vec(b) xx vec(c )) =- (vec(b) xx vec(c )) xx (vec(a) xx vec(d))`
`=(vec(b) xx vec(c )) xx (vec(d) xx vec(a)) =[vec(b) vec(d) vec(a)] vec(c ) -[vec( c)vec(d) vec(a) ]vec(b)`
` =[vec(a) vec(d)vec(b)]vec(c) -[vec(a)vec(c) vec(d)]vec(b)`
From Eq . (i) (ii) and (iii)
`(vec(a) xx vec(b)) xx (vec(c ) xx vec(d)) + (vec(a ) xx vec(d)) xx (vec(d) xx vec(b)) + (vec(a) xx vec(d)) xx (vec(b) xx vec(c))`
`=[vec(a) vec(c)vec(d)]vec(b) -[vec(b)vec(c )vec(d)]vec(a)+[vec(a) vec(d)vec(b) vec(c)-[vec(b)vec(c)vec(d)]vec(a)-[vec(a)vec(d)vec(b)]vec(c)`
` -[vec(a)vec(c)vec(d)]vec(b) =2[vec(b) vec(c )vec(d)]vec(a)`
`:. ` Parallel to `vec(a)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Interger Answer Type Questions)|1 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II)|4 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Fill in the Blank)|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

For non- zero vectors overset(to)(a) , overset(to)(b), overset(to)(c )|,(overset(to)(a)xx overset(to)(b)), Overset(to)(c )| =|overset(to)(a)||overset(to)(b)||overset(to)(c )| holds if and only if

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is