Home
Class 12
MATHS
Let overset(to)(p) , overset(to)(q) , ov...

Let `overset(to)(p) , overset(to)(q) , overset(to)(r )` be three mutually perpendicular vectors of the same magnitude. If a vectors `overset(to)(X)` satisfies the equation
`overset(to)(p) xx [(overset(to)(x) -overset(to)(q)) xx overset(to)(p)] + overset(to)(q) xx [(overset(to)(x)-overset(to)(r ))xx overset(to)(q)]`
`+ overset(to)(r ) xx [(overset(to)(x) - overset(to)(p)) xx overset(to)(r )]=overset(to)(0) " then " overset(to)(x) ` is given by

A

`(1)/(2) (vec (p) +vec (q)-2vec (r ))`

B

`(1)/(2) (vec (p) +vec (q)+vec (r ))`

C

`(1)/(3) (vec (p) +vec (q)+vec (r ))`

D

`(1)/(2) (2vec (p) +vec (q)-vec (r ))`

Text Solution

Verified by Experts

The correct Answer is:
B

Since `vec(p) ,vec(q) ,vec(r )` are mutually perpendicular vectors of same magnitude so let us consider
`underset(vec(p) ". " vec(q)=vec(q) "." vec(r ) = vec(r ) ". " vec(p)=0)(|vec(p)|=|vec(q)|=|vec(r)|=lambda" and ")}`
Given `vec(p) xx {(vec(x)-vec(q)) xx vec(p)}+ vec(q) xx {(vec(x) -vec(r)) xx vec(q)}`
`+vec(r ) xx {(vec(x) - vec(p)) xx vec(r )}=vec(0)`
`rArr (vec(p) ". " vec(p)) xx (vec(X) - vec(q)) -{vec(p).(vec(X)-vec(q))}vec(p)+(vec(q) ". " vec(q)) (vec(X) -vec(r))`
`-{vec(q) ". " (vec(x) -vec(r )) } vec(q) + (vec(r).vec(r))(vec(x)-vec(p)) -{vec(r ).(vec(x) -vec(p))} vec(r )=0`
`rArr vec(X) {(vec(p)"." vec(p)) + (vec(q) "." vec(q))+ (vec(r) ". " vec(r))} - (vec(p) ". " vec(p))vec(q)`
`-(vec(q) ". " vec(q)) r- (vec(r ) ". " vec(r)) vec(p) = (vec(x)"." vec(q)) vec(p) + (vec(x ) ". " vec(q)) vec(q) + (vec(x) ". " vec(r)) vec(r)`
`rArr 3 vec(X) |lambda|^(2) -(vec(p) +vec(q))|vec(r))|lambda|^(2) =(vec(X)"." vec(p))vec(p)`
`+(vec(x ) ". " vec(q)) vec(q) + (vec(x) ". " vec(r)) vec(r)`
Taking dot of Eq. (ii) with `vec(p)` we get
`3(vec(X)"." vec(p)) |lambda|^(2) -|lambda|^(4) =(vec(x ) ". " vec(p)) |lambda|^(2) rArr vec(x) ". " vec(p) = (1)/(2) |lambda|^(2)`
Similarly taking dot of Eq . (ii) with `vec(q) " and " vec(r )` respectively we get
` vec(x) ". " vec(q) = (|lambda|^(2))/(2) = vec(x) ". " vec(r )`
`:. Eq ` (ii) becomes
`3vec(x ) |lambda|^(2) -(vec(p) +vec(q) + vec(r )) |lambda|^(2) = (|lambda|^(2))/(2) (vec(p) +vec(q) + vec(r ))`
`rArr 3vec(x) = (1)/(2) (vec(p) +vec(q) +vec(r )) + (vec(p) +vec(a) +vec(r ))`
`rArr vec(X) = (1)/(2) (vec(p)+vec(q) +vec(r ))`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Fill in the Blanks)|4 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Analytical & Descriptive Questions|8 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Vector Triple Product (Objective Questions II) (Interger Answer Type Questions)|1 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

if overset(to)(a), overset(to)(b) " and " overset(to)(c ) are unit vectors satisfying |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)(c)|^(2)+|overset(to)(c)-overset(to)(a)|^(2)=9 |2overset(to)(a) +5overset(to)(b)+5overset(to)(c)| is equal to

If overset(to)(A) =(1,1,1) , overset(to)( C) =(0,1,-1) are given vectors then a vectors overset(to)(B) satisfying the equations overset(to)(A) xx overset(to)(B) = overset(to)( C) " and " overset(to)(A) ". " overset(to)(B) =3 is ………