Home
Class 12
MATHS
If overset(to)(A) =(1,1,1) , overset(to...

If `overset(to)(A) =(1,1,1) , overset(to)( C) =(0,1,-1)` are given vectors then a vectors `overset(to)(B)` satisfying the equations `overset(to)(A) xx overset(to)(B) = overset(to)( C) " and " overset(to)(A) ". " overset(to)(B) =3 ` is ………

Text Solution

Verified by Experts

The correct Answer is:
`((5)/(3) hat(i) , (2)/(3) hat(j), (2)/(3) hat(k))`

Let `vec(B) =x hat(i) + yhat(j) + zhat(k)`
Given `vec(A) = hat(i) + hat(j) + hat(k) , vec(C ) = hat(j) - hat(k)`
Also given `vec(A) xx vec(B) = vec( C)`
`rArr (z-y) hat(i) - (z-x) hat(j) + (y-x) hat(k) = hat(j) - hat(k)`
`rArr z-y =0 ,x-z = 1,y - x =-1`
Also `vec(A) ". " vec(B) =3 rArr x+y +z=3`
On solving above equations we get
`x=(5)/(3) , y =z= (2)/(3)`
`vec(B) = ((5)/(3) hat(i) , (2)/(3) hat(j) , (2)/(3) hat(k))`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Analytical & Descriptive Questions|8 Videos
  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

Let overset(to)(p) , overset(to)(q) , overset(to)(r ) be three mutually perpendicular vectors of the same magnitude. If a vectors overset(to)(X) satisfies the equation overset(to)(p) xx [(overset(to)(x) -overset(to)(q)) xx overset(to)(p)] + overset(to)(q) xx [(overset(to)(x)-overset(to)(r ))xx overset(to)(q)] + overset(to)(r ) xx [(overset(to)(x) - overset(to)(p)) xx overset(to)(r )]=overset(to)(0) " then " overset(to)(x) is given by

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

If overset(to)(a) , overset(to)(b) , overset(to)(c ) " and " overset(to)(d) are the unit vectors such that (overset(to)(a)xx overset(to)(b)). (overset(to)(c )xx overset(to)(d)) =1 " and " overset(to)(a), overset(to)(c ) = .(1)/(2) , then

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(a) , overset(to)(b) , overset(to)(c ) are non-coplanar unit vectors such that overset(to)(a) xx (overset(to)(b) xx overset(to)(c )) = ((overset(to)(b) + overset(to)(c )))/(sqrt(2)) , then the angle between overset(to)(a) " and " overset(to)(b) is

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .