Home
Class 12
MATHS
The position vectors of the vertices A, ...

The position vectors of the vertices A, B and C of a tetrahedron ABCD are `hat i + hat j + hat k`, `hat k `, `hat i` and `hat 3i`,respectively. The altitude from vertex D to the opposite face ABC meets the median line through Aof triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is2/2/3, find the position vectors of the point E for all its possible positfons

Text Solution

Verified by Experts

The correct Answer is:
`-hat(i) +3hat(j) +3hat(k) " and " 3hat(i) -hat(j) -hat(k)`

F is mid- piont of BC i.e., `F= (hat(i) +3hat(i))/(2) = 2hat(i) " and " AE bot DE`

Let E divides AF in `lambda:1`. The position vectors of E is given by
`(2lambda hat(i)+ 1 (hat(i)+hat(j)+ hat(k))/(lambda +1) = ((2 lambda+1)/(lambda+1)) hat(i) + (1)/(lambda +1) hat(j) + (1)/(lambda +1) hat(k)`
Now volume of the tetrahedron
`=(1)/(3) ` (area of the bases ) (height)
`rArr (2sqrt(2))/(3)=(1)/(3) "(area of the " Delta ABC ) (DE)`
But area of the `Delta ABC =(1)/(2) |vec(BC) xx vec(BA)|`
`=(1)/(2)|2hat(i) xx (hat(j) +hat(k))|=|hat(i) xx hat(j) + hat(i) xx hat(k)| = |hat(k) - hat(j)|=sqrt(2)`
`:. (2sqrt(2))/(3)= (1)/(3) (sqrt(2)) (DE) rArr DE=2`
Since `Delta ADE` is a right angle triangle then
`rArr AD^(2) =AE^(2) +DE^(2)`
But `vec(AE) = (2lambda+1)/(lambda+1) hat(i) + (1)/(lambda+1) hat(j) + (1)/(lambda+1) hat(k) -(hat(i) +hat(j) + hat(k))`
`=(lambda)/(lambda+1) hat(i) -(lambda)/(lambda+1) hat(j) - (lambda)/(lambda+1) hat(k)`
`rArr |vec(AE)|^(2) =(1)/((lambda+1)^(2)) [lambda^(2) + lambda^(2)+lambda^(2)]= (3lambda^(2))/((lambda+1)^(2))`
Theerefore `12 =(3lambda^(2))/((lambda+1)^(2))`
`rArr 4(lambda +1)^(2) =lambda^(2) rArr 4lambda^(2) +4 + delta lambda =lambda^(2)`
`rArr 3lambda^(2) +delta lambda + 4=0 rArr 3 lambda^(2) + 6lambda +2lambda +4=0`
`rArr 3lambda(lambda+2) + 2 (lambda +2)=0`
`rArr (3lambda +2) (lambda +2) =0 rArr lambda -2 //3 . lambda =-2`
when `lambda=-2//3` position vectors of E is given by
`((2lambda +1)/(lambda+1)) hat(i) + (1)/(lambda+1) hat(j) + (1)/(lambda+1) hat(k)`
`=(2.(-2//3)+1)/(-2//3+1) hat(i) + (1)/(-2//3+1) hat(j) + (1)/(-2//3+1) hat(k)`
`=(-4//3+1)/((-2+3)/(3))hat(i) + (1)/((-2+3)/(3)) hat(j) + ( 1)/((-2+3)/(3))hat(k)`
`=((-4+3)/(3))/(1//3) hat(i) +(1)/(1//3)hat(j)+ (1)/(1//3) hat(k) =- hat(i) +3hat(j) +3hat(k)`
and when `lambda=-2 ,` position vector of E is given by
` (2xx (-2)+1)/(-2+1) hat(i) + (1)/( -2+1) hat(j) + (1)/(-2+1) hat(k) =(-4+1)/(-1) hat(i) -hat(j) -hat(k)`
`=3hat(i) -hat(j) -hat(k)`
Therefore `-hat(i) +3hat(j) +3hat(k) " and " +3hat(i) - hat(j) - hat(k)` are the answer.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Fill in the Blanks)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the vertices A,B, and C of a triangle are hat i+hat j,hat j+hat k and hat i+hat k ,respectively.Find the unite vector hat r lying in the plane of ABC and perpendicular to IA, where I is the incentre of the triangle.

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

The position vectors of the vectices A, B, C of a triangle ABC " are " hati - hat j - 3 hat k , 2 hati + hat j - 2 hat k and - 5 hati + 2 hat j - 6 hat k respectively. The length of the bisector AD of the angle angle BAC where D is on the line segment BC, is

If the position vectors of the points A, B, C are -2hat i + 2hat j + 2hat k, 2hat i+ 3hat j +3hat k and -hat i 2hat j+3hat k respectively, show that ABC is an isosceles triangle.

The position vectors of the angular points of a tetrahedron are A(3hat i-2hat j+hat k),B(3hat i+hat j+5hat k),C(4hat i+3hat k) and D(hat i) Then the acute angle between the lateral face ADC and the base face ABC is:

The position vectors of the vertices A, B and C of a triangle are 2 hat i-3 hat j+3 hat k, 2 hat i+2 hat j+3 hat k and , -hat i+hat j+3 hat k respectively. Let l denotes the length of the angle bisector AD of /_BAC where D is on the line segment BC , then 2l^(2) equals:

The position vectors of the four angular points of a tetrahedron are A(hat j+2hat k),B(3hat i+hat k),C(4hat i+3hat j+6hat k) and D(2hat i+3hat j+2hat k) Find the volume of the tetrahedron ABCD.

If the vertices of a tetrahedron have the position vectors vec 0,hat i+hat j,2hat j-hat k and hat i+hat k then the volume of the tetrahedrom is

If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) , respectively then length of vec(AB) is equal to?