Home
Class 12
MATHS
If overset(to)(A) = 2hat(i) + hat(k) , o...

If `overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k)`
Determine a vector `overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0`

Text Solution

Verified by Experts

The correct Answer is:
`-(hat(i) - 8hat(j) + 2hat(k)`

Let `vec(R ) = xhat(i) + yhat(j) +zhat(k)`
`:., vec(R ) xx vec(B) = vec(C ) xx vec(B )`
`rArr |{:(hat(i),,hat(j),,hat(k)),(x,,y,,z),(1,,1,,1):}|= |{:(hat(i),,hat(j),,hat(k)),(4,,-3,,7),(1,,1,,1):}|`
`rArr (y-z) hat(i) -(x -z) hat(j) +(x-y) hat(k) =- 10hat(i) -3hat(j) +7hat(k) `
`rArr y-z =- 10, z =- 3 , x -y =7`
and ` vec(R ) ". " vec(A ) =0 rArr 2x + z=0`
On solving above equations x=- 1 ,y=-8 and z=2
`:. vec(R ) =- hat(i) -8hat(j) +2hat(k)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Fill in the Blanks)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and overset(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

Let vec(A) = 2hat(i) + hat(k), vec(B) = hat(i) + hat(j) + hat(k) and vec(C) = 4hat(i) - 3hat(j) + 7hat(k) . Determine a vector vec(R) satisfying vec(R) xx vec(B) = vec(C) xx vec(B) and vec(R).vec(A) = 0

Let overset(to)(a) =2hat(i) +hat(j) + hat(k), overset(to)(b) =hat(i) + 2hat(j) -hat(k) and a unit vector overset(to)(c ) be coplanar. If overset(to)(c ) is perpendicular to overset(to)(a) " then " overset(to)(c ) is equal to

If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

Let overset(to)(a) = hat(i) - hat(j) , overset(to)(b) - hat(k) , overset(to)( c) - hat(k) - hat(i) . If overset(to)(d) is a unit vector such that overset(to)(a) , Overset(to)(d) =0= [ overset(to)(b) overset(to)(c ) overset(to)d)] then overset(to)(d) equals

Let overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) is a vectors such that |overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2) and the angle between (overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )| is equal to

Let overset(to)(a) =hat(i)+2hat(j)+hat(k),overset(to)(b) =hat(i)-hat(j)+hat(k),overset(to)(C )=hat(i)+hat(j) -hat(k). A vector coplanar to overset(to)(a) and overset(to)(b) has a projections along overset(to)(c ) of magnitude (1)/(sqrt(3)) then the vector is

If overset(to)(a) " and " overset(to)(b) are vectors in space given by overset(to)(a) = (hat(i) -2hat(j))/(sqrt(5)) " and " overset(to)(b) = (2hat(i) + hat(j) +3hat(k))/(sqrt(14)) then the value of (2overset(to)(a) + overset(to)(b)).[(overset(to)(a) xx overset(to)(b)) xx (overset(to)(a) -2overset(to)(b))] is .........

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}| is equal to

The volume of the parallelopiped whose sides are given by overset(to)(OA)= 2hat(i) -3hat(j) , overset(to)(OB) +hat(i) + hat(j) -hat(k) overset(to)(OC)= 3hat(i) -hat(k) , is