Home
Class 12
MATHS
If vectors overset(to)(a) , overset(to...

If vectors `overset(to)(a) , overset(to)(b) , overset(to)( C)` are coplanar then show that
`|{:(overset(to)(a),,overset(to)(b),,overset(to)(c )),(overset(to)(a)"."overset(to)(a),,overset(to)(a)"."overset(to)(b),,overset(to)(a)"."overset(to)(c )),(overset(to)(b)"."overset(to)(a),,overset(to)(b)"."overset(to)(b),,overset(to)(b)"." overset(to)(c )):}|`

Text Solution

Verified by Experts

Given that `vec(a) , vec(b) vec(c )` are coplanar vectors
`:. ` There exists scalar x,y, z not all zero such that
`x vec(a ) + yvec(b) + z vec(c )=0`
Taking dot with `vec(a) " and " vec(b)` respectively we get
`x (vec(a) " ." vec(b)) + y(vec(a) " ." vec(b)) + z (vec(a) ". " vec( c))=0`
and `x (vec(a) ". " vec(b )) + y(vec( b) "." vec(b )) + z (vec( c) ". " vec( b))=0`
Since Eqs . (i) (ii) and (iii) represent homogeneous
equations with `(x,y,z) ne (0,0,0)`
`rArr ` Non-trivial solutions
`:. Delta =0 rArr |{:(vec(a),,vec(b),,vec( c)),(vec(a) ". " vec(a),,vec(a) ". "vec(b),,vec(a)"."vec(c)),(vec(b) "."vec(b),,vec(b) "."vec(b),,vec(b)"."vec(c )):}|=vec(0)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    IIT JEE PREVIOUS YEAR|Exercise Solving Equations and Reciprocal of Vectors (Objective Questions II) (Fill in the Blanks)|4 Videos
  • TRIGONOMETRICAL RATIOS AND IDENTITIES

    IIT JEE PREVIOUS YEAR|Exercise HEIGHT AND DISTANCE|10 Videos

Similar Questions

Explore conceptually related problems

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(A), overset(to)(B), overset(to)(C ) three non-coplanar vectors then (overset(to)(A) ,(overset(to)(B)xxoverset(to)(C)))/((overset(to)(C)xx overset(to)(A)). overset(to)(B))+ (overset(to)(B).(overset(to)(A) xx overset(to)(C)))/(overset(to)(C).(overset(to)(A)xx overset(to)(B)))=.........

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

If overset(to)(a) , overset(to)(b) " and " overset(to)(c ) are three non- coplanar vectors then (overset(to)(a) + overset(to)(b) + overset(to)(c )) . [( overset(to)(a) + overset(to)(b)) xx (overset(to)(a) + overset(to)(c ))] equals

if overset(to)(a),overset(to)(b) " and " overset(to)(c ) are unit vectors then |overset(to)(a)-overset(to)(b)|^(2)+|overset(to)(b)-overset(to)c|^(2)+|overset(to)(c)-overset(to)(a)|^(2) does not exceed

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0 for some non-zero vector overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .