Home
Class 12
CHEMISTRY
Given C(("graphite"))+O(2)(g)toCO(2)(g),...

Given `C_(("graphite"))+O_(2)(g)toCO_(2)(g),`
`Delta_(r)H^(0)=-393.5kJ" "mol^(-1)`
`H_(2)(g)=+(1)/(2)O_(2)(g)toH_(2)O(1),`
`Delta_(r)H^(0)=-285.8" kJ "mol^(-1)`
`CO_(2)(g)+2H_(2)O(1)toCH_(4)(g)+2O_(2)(g)`,
`Delta_(r)H^(0)=+890.3kJ" "mol^(-1)`
Based on the above thermochemical equations, the value of `Delta_(r)H^(0)` at at 298 K for the reaction
`C_(("graphite"))+2H_(2)(g)toCH_(4)(g)` will be:

A

`+144.0" kJ "mol^(-1)`

B

`-74.8kJ " "mol^(-1)`

C

`-144.0" kJ "mol^(-1)`

D

`+74.8" kJ "mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of ΔrH° at 298 K for the reaction: \[ C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \] we will manipulate the provided thermochemical equations and their enthalpy changes. ### Step 1: Write down the given reactions and their ΔrH° values. 1. \( C_{\text{(graphite)}} + O_2(g) \rightarrow CO_2(g) \) \( \Delta_rH^{0} = -393.5 \, \text{kJ/mol} \) (Equation 1) 2. \( H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \) \( \Delta_rH^{0} = -285.8 \, \text{kJ/mol} \) (Equation 2) 3. \( CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g) \) \( \Delta_rH^{0} = +890.3 \, \text{kJ/mol} \) (Equation 3) ### Step 2: Manipulate the equations to derive the target reaction. To obtain the target reaction \( C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \), we will: - Use Equation 1 as it is. - Use Equation 2, but we need 2 moles of \( H_2 \), so we will multiply it by 2: \[ 2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \] \( \Delta_rH^{0} = 2 \times (-285.8) = -571.6 \, \text{kJ/mol} \) (Modified Equation 2) - Use Equation 3 as it is. ### Step 3: Add the manipulated equations together. Now we will add the equations: 1. \( C_{\text{(graphite)}} + O_2(g) \rightarrow CO_2(g) \) 2. \( 2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \) 3. \( CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g) \) Combining these gives: \[ C_{\text{(graphite)}} + O_2(g) + 2H_2(g) + O_2(g) + CO_2(g) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2O(l) + CH_4(g) + 2O_2(g) \] ### Step 4: Cancel out the common species. On simplifying, we cancel out \( CO_2(g) \) and \( 2H_2O(l) \) from both sides and also \( O_2(g) \): This gives us: \[ C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \] ### Step 5: Calculate the overall ΔrH°. Now we can calculate the overall ΔrH°: \[ \Delta_rH^{0} = \Delta_rH^{0}_{\text{(1)}} + \Delta_rH^{0}_{\text{(2)}} + \Delta_rH^{0}_{\text{(3)}} \] \[ \Delta_rH^{0} = (-393.5) + (-571.6) + (890.3) \] Calculating this: \[ \Delta_rH^{0} = -393.5 - 571.6 + 890.3 = -74.8 \, \text{kJ/mol} \] ### Final Answer: The value of \( \Delta_rH^{0} \) for the reaction \( C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \) is: \[ \Delta_rH^{0} = -74.8 \, \text{kJ/mol} \] ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|423 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise CHEMSITRY|25 Videos