Given `C_(("graphite"))+O_(2)(g)toCO_(2)(g),` `Delta_(r)H^(0)=-393.5kJ" "mol^(-1)` `H_(2)(g)=+(1)/(2)O_(2)(g)toH_(2)O(1),` `Delta_(r)H^(0)=-285.8" kJ "mol^(-1)` `CO_(2)(g)+2H_(2)O(1)toCH_(4)(g)+2O_(2)(g)`, `Delta_(r)H^(0)=+890.3kJ" "mol^(-1)` Based on the above thermochemical equations, the value of `Delta_(r)H^(0)` at at 298 K for the reaction `C_(("graphite"))+2H_(2)(g)toCH_(4)(g)` will be:
A
`+144.0" kJ "mol^(-1)`
B
`-74.8kJ " "mol^(-1)`
C
`-144.0" kJ "mol^(-1)`
D
`+74.8" kJ "mol^(-1)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the value of ΔrH° at 298 K for the reaction:
\[ C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \]
we will manipulate the provided thermochemical equations and their enthalpy changes.
### Step 1: Write down the given reactions and their ΔrH° values.
1. \( C_{\text{(graphite)}} + O_2(g) \rightarrow CO_2(g) \)
\( \Delta_rH^{0} = -393.5 \, \text{kJ/mol} \) (Equation 1)
2. \( H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \)
\( \Delta_rH^{0} = -285.8 \, \text{kJ/mol} \) (Equation 2)
3. \( CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g) \)
\( \Delta_rH^{0} = +890.3 \, \text{kJ/mol} \) (Equation 3)
### Step 2: Manipulate the equations to derive the target reaction.
To obtain the target reaction \( C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \), we will:
- Use Equation 1 as it is.
- Use Equation 2, but we need 2 moles of \( H_2 \), so we will multiply it by 2:
\[ 2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \]
\( \Delta_rH^{0} = 2 \times (-285.8) = -571.6 \, \text{kJ/mol} \) (Modified Equation 2)
- Use Equation 3 as it is.
### Step 3: Add the manipulated equations together.
Now we will add the equations:
1. \( C_{\text{(graphite)}} + O_2(g) \rightarrow CO_2(g) \)
2. \( 2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \)
3. \( CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g) \)
Combining these gives:
\[ C_{\text{(graphite)}} + O_2(g) + 2H_2(g) + O_2(g) + CO_2(g) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2O(l) + CH_4(g) + 2O_2(g) \]
### Step 4: Cancel out the common species.
On simplifying, we cancel out \( CO_2(g) \) and \( 2H_2O(l) \) from both sides and also \( O_2(g) \):
This gives us:
\[ C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \]
### Step 5: Calculate the overall ΔrH°.
Now we can calculate the overall ΔrH°:
\[
\Delta_rH^{0} = \Delta_rH^{0}_{\text{(1)}} + \Delta_rH^{0}_{\text{(2)}} + \Delta_rH^{0}_{\text{(3)}}
\]
\[
\Delta_rH^{0} = (-393.5) + (-571.6) + (890.3)
\]
Calculating this:
\[
\Delta_rH^{0} = -393.5 - 571.6 + 890.3 = -74.8 \, \text{kJ/mol}
\]
### Final Answer:
The value of \( \Delta_rH^{0} \) for the reaction \( C_{\text{(graphite)}} + 2H_2(g) \rightarrow CH_4(g) \) is:
\[
\Delta_rH^{0} = -74.8 \, \text{kJ/mol}
\]
---