Home
Class 10
MATHS
‘O’ is any point in the interior of a tr...

‘O’ is any point in the interior of a triangle ABC. If ` OD bot BC, OE bot`AC and OF `bot` AB, show that
(i) `OA^(2) + OB^(2) + OC^(2) - OD^(2) - OE^(2) - OF^(2) = AF^(2) + BD^(2) + CE^(2)`
(ii) `AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BE^(2)`.

Promotional Banner

Topper's Solved these Questions

  • SIMILAR TRIANGLES

    NCERT BANGLISH|Exercise OPTIONAL EXERCISE|6 Videos
  • SIMILAR TRIANGLES

    NCERT BANGLISH|Exercise TRY THIS|6 Videos
  • SIMILAR TRIANGLES

    NCERT BANGLISH|Exercise EXERCISE - 8.3|6 Videos
  • SETS

    NCERT BANGLISH|Exercise Try This|11 Videos
  • STATISTICS

    NCERT BANGLISH|Exercise THINK AND DISCUSS|8 Videos

Similar Questions

Explore conceptually related problems

ABCD is a rhombus.Prove that AB^(2) + BC^(2) +CD^(2) + DA^(2) = AC^(2) + BD^(2)

O is any point inside a rectangle ABCD, Prove that OA^(2) + OC^(2)= OB^(2) + OD^(2)

In Delta ABC , AD is a median and AM _|_ BC.Prove that (a) AC^(2) = AD^(2) +BC.DM+ ((BC)/(2))^(2) (b) AB^(2) = AD^(2) -BC.DM+ ((BC)/(2))^(2) (c ) AC^(2) + AB^(2) = 2AD^(2) +(1)/(2) BC^(2)

In Delta ABC, AD_|_ BC . Prove that AB^(2) - BD^(2) =AC^(2) -CD^(2)

‘O’ is any point inside a rectangle ABCD. Prove that OB^(2) + OD^(2) = OA^(2) + OC^(2)

If in DeltaABC, AD_|_ BC, then prove that AB^(2) + CD^(2) = AC^(2) + BD^(2)

ABC is a right triangle right angled at B. Let D and E be any points on AB and BC respectively. Prove that AE^(2) + CD^(2) = AC^(2) + DE^(2) .

In an equilateral triangle ABC, D is a point on side BC such that BD = (1)/(3) BC. Prove that 9 AD^(2) = 7 AB^(2) .

ABC is a right-angled isoscels triangles of which /_C is a right angle. If D is any point on AB. Then prove that AD^(2) + BD^(2) = 2CD^(2)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)