Home
Class 12
MATHS
(dy)/(dx) = sqrt(4 - y^(2))(-2 lt y lt 2...

`(dy)/(dx) = sqrt(4 - y^(2))(-2 lt y lt 2)`

Text Solution

Verified by Experts

The correct Answer is:
`y = 2 sin (x + C)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.5|17 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.6|19 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.3|12 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos

Similar Questions

Explore conceptually related problems

If tan alpha=(x)/(y) , then show that x "cosec" (alpha)/(3)- y "sec" (alpha)/(3)=3 sqrt(x^(2)+y^(2))(0 lt alpha lt (pi)/(2))

If sqrt(1 -x^2) + sqrt(1-y^2) = a(x-y), show that, (dy)/(dx) = sqrtfrac(1-y^2)(1-x^2)

The solution of the equation (dy)/(dx)=sqrt(1-x^(2)-y^(2)+x^(2)y^(2)) is -

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .

Solve (dy)/(dx) + y = tan x (0 le x lt (pi)/(2))

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)) , prove that, (dy)/(dx)=(xsqrt(1-y^(4)))/(ysqrt(1-x^(4)))

y dx + (x - y^(2))dy = 0

The Integrating Factor of the differential equation (1 - y^(2))(dx)/(dy) + yx = ay (-1 lt y lt 1) is

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (-1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

The solution of (x d x+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2)) is