Home
Class 11
MATHS
Expand using Binomial Theorem (1+x/2-2/x...

Expand using Binomial Theorem `(1+x/2-2/x)^4,x!=0.`

Text Solution

AI Generated Solution

To expand the expression \( (1 + \frac{x}{2} - \frac{2}{x})^4 \) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify the terms We can rewrite the expression as: \[ (1 + \frac{x}{2} + (-\frac{2}{x}))^4 \] Here, we have \( A = 1 + \frac{x}{2} \) and \( B = -\frac{2}{x} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT|Exercise EXERCISE 8.2|6 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise EXERCISE 8.1|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.4|6 Videos

Similar Questions

Explore conceptually related problems

Expand using binomial theorem (x+1/x)^2 (x ne 0) = ………..

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

Expand using binomial theorem (4x - 5y)^5 = ………..

Expand the following by binomial theorem: (x^2+2/x)^4, x!=0

Expand the following by binomial theorem: (1-2x)^5

Expand the following by binomial theorem: (1-x)^6

Expand the following by binomial theorem: (x^2+3/x)^5, x!=0

Using binomial theorem expand (1+(x)/(2)-(2)/(x))^(4),x!=0

Expand (2x+7)^(5) by using binomial theorem

Expand the following by binomial theorem: (x+ 1/x)^7