Home
Class 11
MATHS
Prove that cos theta + "sin " (270^...

Prove that
cos `theta + "sin " (270^(@) +theta) - "sin "(270^(@) -theta) + "cos " (180^(@) +theta) =0`

Text Solution

AI Generated Solution

To prove the equation: \[ \cos \theta + \sin(270^\circ + \theta) - \sin(270^\circ - \theta) + \cos(180^\circ + \theta) = 0 \] we will simplify each term step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15B)|20 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

cos A + sin (270 ^ (@) + A) -sin (270 ^ (@) - A) + cos (180 ^ (@) + A) = 0

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove the following: sin theta sin(90^(@)-theta)-cos theta cos(90^(@)-theta)=0

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

The value of cos(270^(@)+theta)cos(90^(@)+theta)-sin(270^(@)-theta)cos theta is

Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta